Marie-Claude Gendron1
Louis Viollet1
Aitana Perea-Gomez1
Chun-hong Xia1
Learn More
  • Aitana Perea-Gomez, Anne Camus, Anne Moreau, Kate Grieve, Gael Moneron, Arnaud Dubois +2 others
  • 2004
BACKGROUND It is generally assumed that the migration of anterior visceral endoderm (AVE) cells from a distal to a proximal position at embryonic day (E)5.5 breaks the radial symmetry of the mouse embryo, marks anterior, and conditions the formation of the primitive streak on the opposite side at E6.5. Transverse sections of a gastrulating mouse embryo fit(More)
In the current study we describe the changes of overall organization of lens fiber cells in connexin 46 (Cx46) and connexin 50 (Cx50) knockout mice. Morphometric analyses and the application of immunocytochemical techniques revealed that in Cx46 knockout lens (Cx46 -/-), where Cx50 is expressed alone, the postnatal differentiation of secondary fiber cells(More)
Mutations of the survival motor neuron gene SMN1 cause the inherited disease spinal muscular atrophy (SMA). The ubiquitous SMN protein facilitates the biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs). The protein is detected in the cytoplasm, nucleoplasm and enriched with snRNPs in nuclear Cajal bodies. It is structurally divided into at(More)
Radial spokes and the consequences of their relationships with the central apparatus seem to play a very important role in the regulation of axonemal activity. We modeled their behavior and observed that it appears to differ in the cilium and the flagellum with respect to the development of bending as a function of time. Specifically, our calculation raises(More)
The axoneme is the skeleton and motor axis of flagella and cilia in eukaryotic organisms. Basically it consists of a series of longitudinal fibers (outer doublets of microtubules) that design a cylinder and whose sliding, due to the coordinated activities of dedicated molecular motors (the dynein arms), is converted into a bending because outer doublets(More)
Many data demonstrate that the regulation of the bending polarity of the "9+2" axoneme is supported by the curvature itself, making the internal constraints central in this process, adjusting either the physical characteristics of the machinery or the activity of the enzymes involved in different pathways. Among them, the very integrated Geometric Clutch(More)
In a recent study [Cibert, 2008. Journal of Theoretical Biology 253, 74-89], by assuming that walls of microtubules are involved in cyclic compression/dilation equilibriums as a consequence of cyclic curvature of the axoneme, it was proposed that local adjustments of spatial frequencies of both dynein arms and beta-tubulin monomers facing series create(More)
The axoneme "9 + 2" is basically a system constituted of a cylinder of 9 microtubule doublets surrounding a central pair of microtubules. These bi-tubular structures are considered as the support system of the active molecular complexes that generate and regulate the axonemal movement. Schoutens has calculated their moments of inertia [Schoutens, 1994:(More)
  • 1