Christian C. Naus

Learn More
Forced expression of gap junction proteins, connexins, enables gap junction-deficient cell lines to propagate intercellular calcium waves. Here, we show that ATP secretion from the poorly coupled cell lines, C6 glioma, HeLa, and U373 glioblastoma, is potentiated 5- to 15-fold by connexin expression. ATP release required purinergic receptor-activated(More)
Astrocytes are capable of widespread intercellular communication via propagated increases in intracellular Ca(2+) concentration. We have used patch clamp, dye flux, ATP assay, and Ca(2+) imaging techniques to show that one mechanism for this intercellular Ca(2+) signaling in astrocytes is the release of ATP through connexin channels ("hemichannels") in(More)
Glia calcium signaling has recently been identified as a potent modulator of synaptic transmission. We show here that the spatial expansion of calcium waves is mediated by ATP and subsequent activation of purinergic receptors. Ectopic expression of gap junction proteins, connexins (Cxs), leads to an increase in both ATP release and the radius of calcium(More)
The mechanisms involved in Alzheimer's disease are not completely understood and how glial cells contribute to this neurodegenerative disease remains to be elucidated. Because inflammatory treatments and products released from activated microglia increase glial hemichannel activity, we investigated whether amyloid-β peptide (Aβ) could regulate these(More)
The idea that the gap junction family of proteins, connexins, are tumour suppressors has been widely supported through numerous cancer models. However, the paradigm that connexins and enhanced gap junctional intercellular communication is of universal benefit by restricting tumour growth has been challenged by more recent evidence that suggests a role for(More)
Inflammation contributes to neurodegeneration in post-ischemic brain, diabetes, and Alzheimer's disease. Participants in this inflammatory response include activation of microglia and astrocytes. We studied the role of microglia treated with amyloid-β peptide (Aβ) on hemichannel activity of astrocytes subjected to hypoxia in high glucose. Reoxygenation(More)
Traumatic brain injury results in neuronal loss and associated neurological deficits. Although most research on the factors leading to trauma-induced damage focuses on synaptic or ionic mechanisms, the possible role of direct intercellular communication via gap junctions has remained unexplored. Gap junctions connect directly the cytoplasms of coupled(More)
C6 glioma cells express low levels of the gap junction protein connexin 43 and its mRNA and display very weak dye coupling. When implanted into the rat cerebrum, these cells quickly give rise to a large glioma. To investigate the role of gap junctions in the tumor characteristics of these cells, we have used Lipofectin-mediated transfection to introduce a(More)
We describe a simple method for evaluating gap junctional communication (GJC) between cells in culture. The procedure involves pre-loading cells with two fluorescent dyes: calcein and DiI. Calcein is able to pass through gap junctions, while DiI is not. These pre-loaded cells are then plated with unlabeled cells. The number of cells receiving calcein from(More)
In the past, we transfected C6 glioma cells with connexin43 cDNA, resulting in a significant increase in connexin43 mRNA and protein, as well as reduced proliferation and tumorigenesis. To investigate the morphological aspects of increased connexin43 expression in these cells, we have used a combination of immunocytochemistry, cytochemistry, and electron(More)