Learn More
In all-wireless networks a crucial problem is to minimize energy consumption, as in most cases the nodes are battery-operated. We focus on the problem of power-optimal broadcast, for which it is well known that the broadcast nature of the radio transmission can be exploited to optimize energy consumption. Several authors have conjectured that the problem of(More)
A wireless sensor network consists of many energy-autonomous microsensors distributed throughout an area of interest. Each node monitors its local environment, locally processing and storing the collected data so that other nodes can use it. To optimize power consumption, the Swiss Center for Electronics and Microtechnology has developed WiseNET, an(More)
WiseMAC is a medium access control protocol designed for the WiseNET™ wireless sensor network. It is based on CSMA and uses the preamble sampling technique to minimize the power consumed when listening to an idle medium. A unique feature of this protocol is to exploit the knowledge of the sampling schedule of its direct neighbors in order to use a(More)
This paper presents a new parameter extraction methodology, based on an accurate and continuous MOS model dedicated to low-voltage and low-current analog circuit design and simulation (EKV MOST Model). The extraction procedure provides the key parameters from the pinch-off versus gate voltage characteristic, measured at constant current from a device biased(More)
In all-wireless networks, minimizing energy consumption is crucial as in most cases the nodes are battery-operated. We focus on the problem of power-optimal broadcast, for which it is well known that the broadcast nature of radio transmissions can be exploited to optimize energy consumption. This problem appears to be difficult to solve [30]. We provide a(More)
Inexact and approximate circuit design is a promising approach to improve performance and energy efficiency in technology-scaled and low-power digital systems. Such strategy is suitable for error-tolerant applications involving perceptive or statistical outputs. This paper presents a novel architecture of an Inexact Speculative Adder with optimized hardware(More)
The domain of <i>inexact</i> circuit design, in which accuracy of the circuit can be exchanged for substantial cost (energy, delay, and/or area) savings, has been gathering increasing prominence of late owing to a growing desire for reducing energy consumption of the systems, particularly in the domain of embedded and (portable) multimedia applications.(More)
In the design cycle of complex integrated circuits, the compact device simulation models are the privileged vehicle of information between the foundry and the designer. Effective circuit design, particularly in the context of analog and mixed analog-digital circuits using silicon CMOS technology, requires a MOS transistor (MOST) circuit simulation model(More)
This chapter covers device and circuit aspects of low-power analog CMOS circuit design. The fundamental limits constraining the design of low-power circuits are first recalled with an emphasis on the implications of supply voltage reduction. Biasing MOS transistors at very low current provides new features but requires dedicated models valid in all regions(More)