Christian Blum

Learn More
The field of metaheuristics for the application to combinatorial optimization problems is a rapidly growing field of research. This is due to the importance of combinatorial optimization problems for the scientific as well as the industrial world. We give a survey of the nowadays most important metaheuristics from a conceptual point of view. We outline the(More)
Research on a new metaheuristic for optimization is often initially focused on proof-of-concept applications. It is only after experimental work has shown the practical interest of the method that researchers try to deepen their understanding of the method’s functioning not only through more and more sophisticated experiments but also by means of an effort(More)
Ant colony optimization (ACO) is a metaheuristic approach to tackle hard combinatorial optimization problems. The basic component of ACO is a probabilistic solution construction mechanism. Due to its constructive nature, ACO can be regarded as a tree search method. Based on this observation, we hybridize the solution construction mechanism of ACO with beam(More)
Research inmetaheuristics for combinatorial optimizationproblemshas lately experienced anoteworthy shift towards the hybridization of metaheuristics with other techniques for optimization. At the same time, the focus of research has changed from being rather algorithm-oriented to being more problemoriented. Nowadays the focus is on solving the problem at(More)
Ant colony optimization is a metaheuristic approach belonging to the class of model-based search algorithms. In this paper, we propose a new framework for implementing ant colony optimization algorithms called the hyper-cube framework for ant colony optimization. In contrast to the usual way of implementing ant colony optimization algorithms, this framework(More)
Ant colony optimization (ACO) is an optimization technique that was inspired by the foraging behaviour of real ant colonies. Originally, the method was introduced for the application to discrete optimization problems. Research efforts led to the development of algorithms for the application to continuous optimization problems. In this paper we extend and(More)
We deal with the application of ant colony optimization to group shop scheduling, which is a general shop scheduling problem that includes, among others, the open shop scheduling problem and the job shop scheduling problem as special cases. The contributions of this paper are twofold. First, we propose a neighborhood structure for this problem by extending(More)
Ant colony optimization (ACO) is an optimization technique that was inspired by the foraging behaviour of real ant colonies. Originally, the method was introduced for the application to discrete optimization problems. Recently we proposed a first ACO variant for continuous optimization. In this work we choose the training of feed-forward neural networks for(More)