Learn More
The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe(More)
Proteins constituting the presynaptic machinery of vesicle release undergo substantial conformational changes during the process of exocytosis. While changes in the conformation make proteins vulnerable to aggregation and degradation, little is known about synaptic chaperones which counteract these processes. We show that the cell adhesion molecule CHL1(More)
The X-ray crystal structure of the molecular complex of penicillin G with a deacylation-defective mutant of the RTEM-1 beta-lactamase from Escherichia coli shows how these antibiotics are recognized and destroyed. Penicillin G is covalently bound to Ser 70 0 gamma as an acyl-enzyme intermediate. The deduced catalytic mechanism uses Ser 70 0 gamma as the(More)
The alkaline proteinase from the mesophilic bacterium Bacillus mesentericus has been crystallized in a 1:1 complex with the inhibitor eglin-C from the medical leech. The crystals have cell dimensions of a = 43.0, b = 71.9, c = 48.3 A and beta = 110.0 degrees and are in the space group P2(1). Three-dimensional data to 2.0 A have been recorded on film from a(More)
The crystal structure of lipoamide dehydrogenase from Azotobacter vinelandii has been determined by a combination of molecular replacement and isomorphous replacement techniques yielding eventually a good-quality 2.8 A electron density map. Initially, the structure determination was attempted by molecular replacement procedures alone using a model of human(More)
Crystal structure determinations of biological macromolecules are limited by the availability of sufficiently sized crystals and by the fact that crystal quality deteriorates during data collection owing to radiation damage. Exploiting a micrometre-sized X-ray beam, high-precision diffractometry and shutterless data acquisition with a pixel-array detector,(More)
'Locked nucleic acids' (LNAs) are known to introduce enhanced bio- and thermostability into natural nucleic acids rendering them powerful tools for diagnostic and therapeutic applications. We present the 1.9 Å X-ray structure of an 'all LNA' duplex containing exclusively modified β-D-2'-O-4'C-methylene ribofuranose nucleotides. The helix illustrates a new(More)
Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo-grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography(More)
In this paper, we demonstrate the feasibility of using in situ Dynamic Light Scattering (DLS) to monitor counter-diffusion crystallization experiments in capillaries. Firstly, we have validated the quality of the DLS signal in thin capillaries, which is comparable to that obtained in standard quartz cuvettes. Then, we have carried out DLS measurements of a(More)
In the crystal structure of the polyiodide complex (p-nitrophenyl-alpha-maltohexaose(2)) . Ba(I(3))(2) . 22H(2)O, the maltohexaose units form an antiparallel, left-handed double helix with O-2 ... O-3 and O-6 ... O-6 hydrogen bonding and a central cavity that encloses two triiodide units. This structure contrasts with the parallel, left-handed double helix(More)