Christiaan van der Schoot

Learn More
In plants, complex cellular interactions, which require the exchange of morphogenetic signals, underlie morphogenesis at the shoot apical meristem. Since all apical meristem cells are interconnected by plasmodesmata, we have investigated if symplasmic paths are available which may preferentially channel metabolites and potential morphogens in the apical(More)
Lipid bodies (LBs) are universal constituents of both animal and plant cells. They are produced by specialized membrane domains at the tubular endoplasmic reticulum (ER), and consist of a core of neutral lipids and a surrounding monolayer of phospholipid with embedded amphipathic proteins. Although originally regarded as simple depots for lipids, they have(More)
Tree architecture develops over time through the collective activity of apical and axillary meristems. Although the capacity of both meristems to form buds is crucial for perennial life, a comparative analysis is lacking. As shown here for hybrid aspen, axillary meristems engage in an elaborate process of axillary bud (AXB) formation, while apical dominance(More)
The tiny vascular axis of the embryo emerges post-embryonically as an elaborate and critical infrastructure, pervading the entire plant system. Its expansive nature is especially impressive in trees, where growth and development continue for extended periods. While the shoot apical meristem (SAM) orchestrates primary morphogenesis, the vascular system is(More)
Axillary buds (AXBs) of hybrid aspen (Populus tremula×P. tremuloides) contain a developing dwarfed shoot that becomes para-dormant at the bud maturation point. Para-dormant AXBs can grow out after stem decapitation, while dormant AXBs pre-require long-term chilling to release them from dormancy. The latter is mediated by gibberellin (GA)-regulated(More)
Microinjections of fluorescent dyes have revealed that the shoot apical meristem (SAM) is dynamically partitioned into symplasmic fields (SFs), implying that plasmodesmata (Pd) are held shut at specific locations in the proliferating cellular matrix. The SFs are integrated into a coherent morphogenetic unit by exchange of morphogens and transcription(More)
  • 1