Christiaan P. Sentner

  • Citations Per Year
Learn More
While the presence of hyperlipidaemia in glycogen storage disease (GSD) type Ia and Ib is generally accepted, few investigators have adequately assessed lipid profiles of GSD III in children, in whom the presence of hyperlipidaemia may be most prominent. We analysed the lipid profiles in 44 GSD III patients from 6 months to 30 years of age.(More)
In glycogen storage disease type III (GSD III), deficiency of the debranching enzyme causes storage of an intermediate glycogen molecule (limit dextrin) in the affected tissues. In subtype IIIa hepatic tissue, skeletal- and cardiac muscle tissue is affected, while in subtype IIIb only hepatic tissue is affected. Cardiac storage of limit dextrin causes a(More)
In glycogen storage diseases (GSDs), improved longevity has resulted in the need for neuromuscular surveillance. In 12 children and 14 adults with the "hepatic" (GSD-I) and "myopathic" (GSD-III) phenotypes, we cross-sectionally assessed muscle ultrasound density (MUD) and muscle force. Children with both "hepatic" and "myopathic" GSD phenotypes had elevated(More)
Glycogen Storage Disease type III (GSD III) is an autosomal recessive disorder in which a mutation in the AGL gene causes deficiency of the glycogen debranching enzyme. In childhood, it is characterized by hepatomegaly, keto-hypoglycemic episodes after short periods of fasting, and hyperlipidemia. In adulthood, myopathy, cardiomyopathy, and liver cirrhosis(More)
Glycogen storage disease type III (GSDIII) is a rare disorder of glycogenolysis due to AGL gene mutations, causing glycogen debranching enzyme deficiency and storage of limited dextrin. Patients with GSDIIIa show involvement of liver and cardiac/skeletal muscle, whereas GSDIIIb patients display only liver symptoms and signs. The International Study on(More)
  • 1