Learn More
Before their exocytotic release during stimulation of nerve terminals, nonpeptide neurotransmitters are loaded into synaptic vesicles by specific transporters. Recently, a protein initially identified as brain-specific Na(+)-dependent inorganic phosphate transporter I (BNPI) has been shown to represent a vesicular glutamate transporter (VGLUT1). In this(More)
Two proteins previously known as Na(+)-dependent phosphate transporters have been identified recently as vesicular glutamate transporters (VGLUT1 and VGLUT2). Together, VGLUT1 and VGLUT2 are operating at most central glutamatergic synapses. In this study, we characterized a third vesicular glutamate transporter (VGLUT3), highly homologous to VGLUT1 and(More)
We have recently identified a third subtype of glutamate vesicular transporter (VGLUT) named VGLUT3. In the present study, we provide a detailed account of the regional and cellular distributions of VGLUT3 in the rat brain, using specific nucleotide probes and antisera. The distribution of VGLUT3 protein was compared with that of the other vesicular(More)
Three subtypes of vesicular transporters accumulate glutamate into synaptic vesicles to promote its vesicular release. One of the subtypes, VGLUT3, is expressed in neurons, including cholinergic striatal interneurons, that are known to release other classical transmitters. Here we showed that disruption of the Slc17a8 gene (also known as Vglut3) caused an(More)
Three different subtypes of H(+)-dependent carriers (named VGLUT1-3) concentrate glutamate into synaptic vesicles before its exocytotic release. Neurons using other neurotransmitter than glutamate (such as cholinergic striatal interneurons and 5-HT neurons) express VGLUT3. It was recently reported that VGLUT3 increases acetylcholine vesicular filling,(More)
Three subtypes of vesicular glutamate transporters, named VGLUT1-3, accumulate glutamate into synaptic vesicles. In this study, the post-natal expression of VGLUT3 was determined with specific probes and antiserums in the rat brain and compared with that of VGLUT1 and VGLUT2. The expression of VGLUT1 and VGLUT2 increases linearly during post-natal(More)
Retinoid-related orphan receptor alpha1 (RORalpha1) is a member of the nuclear receptor superfamily. It is highly expressed in CNS particularly in the cerebellum. Absence of this transcription factor in mice leads to several abnormalities, such as cerebellar atrophy linked to Purkinje cell death and impaired differentiation. A major role of RORalpha1 in(More)
  • 1