Christa Kuehn

Learn More
The leaf sucrose transporter SUT1 is essential for phloem loading and long-distance transport of assimilates. Both SUT1 messenger RNA (mRNA) and protein were shown to be diurnally regulated and to have high turnover rates. SUT1 protein was detected by immunolocalization in plasma membranes of enucleate sieve elements (SEs) in tobacco, potato, and tomato.(More)
A new subfamily of sucrose transporters from Arabidopsis (AtSUT4), tomato (LeSUT4), and potato (StSUT4) was isolated, demonstrating only 47% similarity to the previously characterized SUT1. SUT4 from two plant species conferred sucrose uptake activity when expressed in yeast. The K(m) for sucrose uptake by AtSUT4 of 11.6 +/- 0.6 mM was approximately 10-fold(More)
In leaves, sucrose uptake kinetics involve high- and low-affinity components. A family of low- and high-affinity sucrose transporters (SUT) was identified. SUT1 serves as a high-affinity transporter essential for phloem loading and long-distance transport in solanaceous species. SUT4 is a low-affinity transporter with an expression pattern overlapping that(More)
A whole-genome scan to detect quantitative trait loci (QTL) for functional traits was performed in the German Holstein cattle population. For this purpose, 263 genetic markers across all autosomes and the pseudoautosomal region of the sex chromosomes were genotyped in 16 granddaughter-design families with 872 sons. The traits investigated were deregressed(More)
In many organisms, including plants, nucleic acid bases and derivatives such as caffeine are transported across the plasma membrane. Cytokinins, important hormones structurally related to adenine, are produced mainly in root apices, from where they are translocated to shoots to control a multitude of physiological processes. Complementation of a yeast(More)
Intramuscular fat content, also assessed as marbling of meat, represents an important beef quality trait. Recent work has mapped a quantitative trait locus (QTL) with an effect on marbling to the centromeric region of bovine chromosome 14, with the gene encoding thyroglobulin (TG) being proposed as a positional and functional candidate gene for this QTL.(More)
Pathogens invading the mammary gland cause a complex signaling network that activates the early immune defense and leads to an outcome of inflammation symptoms. To examine the importance of mammary epithelial cells in these regulations and interactions resulting in a pathogen-related course of mastitis, we characterized the mRNA expression profile of key(More)
Several studies in a variety of breeds have reported at least two QTL for milk production traits, including milk fat synthesis on bovine chromosome 6 (BTA6), comprising a region that comparatively has been mapped to equivalent syntenic chromosome intervals in human, pig, and mouse harboring loci associated with type II diabetes and obesity-related traits.(More)
Deep RNA sequencing (RNAseq) has opened a new horizon for understanding global gene expression. The functional annotation of non-model mammalian genomes including bovines is still poor compared to that of human and mouse. This particularly applies to tissues without direct significance for milk and meat production, like skin, in spite of its multifunctional(More)
The gene, acyl-CoA:diacylglycerol acyltransferase1 (DGAT1), was recently identified as the one underlying the quantitative trait locus (QTL) for milk production traits in the centromeric region of the bovine chromosome 14. Until now, 2 alleles, the lysine variant (increasing fat yield, fat and protein percentage) and the alanine variant (increasing protein(More)