Learn More
Binding of the glucagon peptide to the glucagon receptor (GCGR) triggers the release of glucose from the liver during fasting; thus GCGR plays an important role in glucose homeostasis. Here we report the crystal structure of the seven transmembrane helical domain of human GCGR at 3.4 Å resolution, complemented by extensive site-specific mutagenesis, and a(More)
G protein-coupled chemokine receptors and their peptidergic ligands are interesting therapeutic targets due to their involvement in various immune-related diseases, including rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, chronic obstructive pulmonary disease, HIV-1 infection and cancer. To tackle these diseases, a lot of effort has(More)
Generic residue numbers facilitate comparisons of, for example, mutational effects, ligand interactions, and structural motifs. The numbering scheme by Ballesteros and Weinstein for residues within the class A GPCRs (G protein-coupled receptors) has more than 1100 citations, and the recent crystal structures for classes B, C, and F now call for a community(More)
CXC chemokine receptor CXCR3 and/or its main three ligands CXCL9, CXCL10, and CXCL11 are highly upregulated in a variety of diseases. As such, considerable efforts have been made to develop small-molecule receptor CXCR3 antagonists, yielding distinct chemical classes of antagonists blocking binding and/or function of CXCR3 chemokines. Although it is(More)
Cytochrome P450 (CYP) 2D6 is one of the most important drug metabolizing enzymes and the rationalization and prediction of potential CYP2D6 substrates is therefore advantageous in the discovery and development of new drugs. Experimentally, the active site of CYP2D6 can be probed by site directed mutagenesis studies. Such studies can be designed from(More)
BACKGROUND AND PURPOSE Chemogenomics focuses on the discovery of new connections between chemical and biological space leading to the discovery of new protein targets and biologically active molecules. G-protein coupled receptors (GPCRs) are a particularly interesting protein family for chemogenomics studies because there is an overwhelming amount of ligand(More)
This review will focus on the construction, refinement, and validation of G Protein-coupled receptor models for the purpose of structure-based virtual screening. Practical tips and tricks derived from concrete modeling and virtual screening exercises to overcome the problems and pitfalls associated with the different steps of the receptor modeling workflow(More)
The sphingosine-1-phosphate type 1 (S1P(1)) receptor is a new target in the treatment of auto-immune diseases as evidenced by the recent approval of FTY720 (Fingolimod). The ligand-binding pocket of the S1P(1) receptor has been generally characterised but detailed insight into ligand-specific differences is still lacking. The aim of the current study is to(More)
The polymorphic human debrisoquine hydroxylase, cytochrome P450 2D6 (CYP2D6), is one of the most important phase I drug metabolising enzymes. It is responsible for metabolising a large number of compounds that mostly share similarity in having a basic N-atom and an aromatic moiety. In homology modelling studies, it has been suggested that in fixation of(More)
We examined the biotransformation of several azaarenes to get information on their rate of removal from contaminated soil by cometabolic degradation. Acridine, 9-methyl-acridine, phenanthridine, benzo[f]quinoline, and benzo[h]quinoline were found to be cometabolized by phenanthrene-degrading Sphingomonas sp. strain LH128. The transformation of acridine and(More)