Learn More
The kynurenine pathway has been implicated as a major component of the neuroinflammatory response to brain injury and neurodegeneration. We found that the neurotoxic kynurenine pathway intermediate quinolinic acid (QUIN) is rapidly expressed, within 24 h, by reactive microglia following traumatic injury to the rodent neocortex. Furthermore, administration(More)
UNLABELLED Experiments with transgenic over-expressing, and null mutant mice have determined that metallothionein-I and -II (MT-I/II) are protective after brain injury. MT-I/II is primarily a zinc-binding protein and it is not known how it provides neuroprotection to the injured brain or where MT-I/II acts to have its effects. MT-I/II is often expressed in(More)
BACKGROUND One of the key pathological features of AD is the formation of insoluble amyloid plaques. The major constituent of these extracellular plaques is the beta-amyloid peptide (Aβ), although Aβ is also found to accumulate intraneuronally in AD. Due to the slowly progressive nature of the disease, it is likely that neurons are exposed to sublethal(More)
  • 1