Chris Siefert

Learn More
Abstract. Several Schur complement-based preconditioners have been proposed for solving (generalized) saddle-point problems. We consider matrices where the Schur complement has rapid decay over some graph known a priori. This occurs for many matrices arising from the discretization of systems of partial differential equations, and this graph is then related(More)
We propose and examine block-diagonal preconditioners and variants of indefinite preconditioners for block two-by-two generalized saddle-point problems. That is, we consider the nonsymmetric, nonsingular case where the (2,2) block is small in norm, and we are particularly concerned with the case where the (1,2) block is different from the transposed (2,1)(More)
We examine block-diagonal preconditioners and efficient variants of indefinite preconditioners for block two-by-two generalized saddle-point problems. We consider the general, nonsymmetric, nonsingular case. In particular, the (1,2) block need not equal the transposed (2,1) block. Our preconditioners arise from computationally efficient splittings of the(More)
Several Schur complement-based preconditioners have been proposed for solving (generalized) saddlepoint problems. We consider probing-based methods for approximating those Schur complements in the preconditioners of the type proposed by [Murphy, Golub and Wathen ’00], [de Sturler and Liesen ’03] and [Siefert and de Sturler ’04]. This approach can be applied(More)
  • 1