Learn More
We investigate unsupervised techniques for acquiring monolingual sentence-level paraphrases from a corpus of temporally and topically clustered news articles collected from thousands of web-based news sources. Two techniques are employed: (1) simple string edit distance, and (2) a heuristic strategy that pairs initial (presumably summary) sentences from(More)
We describe a novel approach to statistical machine translation that combines syntactic information in the source language with recent advances in phrasal translation. This method requires a source-language dependency parser, target language word segmentation and an unsupervised word alignment component. We align a parallel corpus, project the source(More)
We apply statistical machine translation (SMT) tools to generate novel paraphrases of input sentences in the same language. The system is trained on large volumes of sentence pairs automatically extracted from clustered news articles available on the World Wide Web. Alignment Error Rate (AER) is measured to gauge the quality of the resulting corpus. A(More)
The quality of a statistical machine translation (SMT) system is heavily dependent upon the amount of parallel sentences used in training. In recent years, there have been several approaches developed for obtaining parallel sentences from non-parallel, or comparable data, such as news articles published within the same time period (Munteanu and Marcu,(More)
We present a joint language and translation model based on a recurrent neural network which predicts target words based on an unbounded history of both source and target words. The weaker independence assumptions of this model result in a vastly larger search space compared to related feedforward-based language or translation models. We tackle this issue(More)
We combine the strengths of Bayesian modeling and synchronous grammar in unsupervised learning of basic translation phrase pairs. The structured space of a synchronous grammar is a natural fit for phrase pair probability estimation, though the search space can be prohibitively large. Therefore we explore efficient algorithms for pruning this space that lead(More)
The development of broad domain statistical machine translation systems is gated by the availability of parallel data. A promising strategy for mitigating data scarcity is to mine parallel data from comparable corpora. Although comparable corpora seldom contain parallel sentences, they often contain parallel words or phrases. Recent fragment extraction(More)
We describe a novel approach to statistical machine translation that combines syntactic information in the source language with recent advances in phrasal translation. We depend on a source-language dependency parser and a word-aligned parallel corpus. The only target language resource assumed is a word breaker. These are used to produce treelet (“phrase”)(More)
We describe the system from the Natural Language Processing group at Microsoft Research for the BioNLP 2011 Shared Task. The task focuses on event extraction, identifying structured and potentially nested events from unannotated text. Our approach follows a pipeline, first decorating text with syntactic information, then identifying the trigger words of(More)