Chris Petersen

Learn More
Mobile phones offer huge potential as platforms for clinical decision making in resource-poor and remote areas. We present methods for the development of a human-centered interface for anesthesia monitoring that is targeted to remote operating rooms in developing countries. The Phone Oximeter is compatible with major PC and mobile phone operating systems(More)
The development of mobile applications for the diagnosis and management of pregnant women with pre-eclampsia is described. These applications are designed for use by community-based health care providers (c-HCPs) in health facilities and during home visits to collect symptoms and perform clinical measurements (including pulse oximeter readings). The(More)
—This paper describes the design of a robust PID controller for propofol infusion in children and presents the results of clinical evaluation of this closed-loop system during endoscopic investigations in children age 6y-17y. The controller design is based on a set of models that describes the inter-patient variability in the response to propofol infusion(More)
A modular framework for the development of medical applications that promotes deterministic, robust and correct code is presented. The system is based on the portable Gambit Scheme programming language and provides a flexible cross-platform environment for developing graphical applications on mobile devices as well as medical instrumentation interfaces(More)
The photoplethysmogram (PPG) obtained from pulse oximetry shows the local changes of blood volume in tissues. Respiration induces variation in the PPG baseline due to the variation in venous blood return during each breathing cycle. We have proposed an algorithm based on the synchrosqueezing transform (SST) to estimate instantaneous respiratory rate (IRR)(More)
Many aspects of modern medicine, including the administration of anesthetic agents during general surgery, remain unautomated and reliant on the vigilance of the attending clinicians. In other fields where failures can have catastrophic consequences, such as the aviation and nuclear power industry, automated control regimens have been adopted to reduce the(More)
— This paper presents a novel approach to fuel efficient vehicle speed control. Motivated by potential fuel economy improvements through periodic time-varying cruise control, a finite state machine structure is designed to control transitions between discrete states of acceleration, constant speed, and deceleration. The scheme accounts for changes in road(More)
  • 1