Chris P L Freeman

Learn More
There is considerable interest in understanding the biological mechanisms that regulate carbon exchanges between the land and atmosphere, and how these exchanges respond to climate change. An understanding of soil microbial ecology is central to our ability to assess terrestrial carbon cycle-climate feedbacks, but the complexity of the soil microbial(More)
Peatlands represent a vast store of global carbon. Observations of rapidly rising dissolved organic carbon concentrations in rivers draining peatlands have created concerns that those stores are beginning to destabilize. Three main factors have been put forward as potential causal mechanisms, but it appears that two alternatives--warming and increased river(More)
The fluorogenic model substrates, methylumbelliferyl [MUF]-β-D-glucoside, MUF-phosphate and MUF-sulphate, were used to investigate the activities of β-glucosidase, phosphatase and sulphatase, respectively, in Welsh peatland soils. The method was used to investigate depth dependent variations in enzyme activity in a riparian wetland, and flush channel(More)
Peat bogs have historically represented exceptional carbon (C) sinks because of their extremely low decomposition rates and consequent accumulation of plant remnants as peat. Among the factors favoring that peat accumulation, a major role is played by the chemical quality of plant litter itself, which is poor in nutrients and characterized by polyphenols(More)
The model substrate L-dihydroxy phenylalanine (L-DOPA) was used to measure the activity of phenol-oxidase (PO) in peat from a Welsh riparian wetland. The sensitive and relatively simple technique measured the rate of formation of the red coloured compound 2-carboxy-2,3-dihydroindole-5,6-quinone from the enzymic oxidation of L-dopa. The method was used to(More)
Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams (1 Tg is a billion kilograms). Approximately 65 per cent of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and fire are converting it into a globally significant source of(More)