Chris Nester

Learn More
The aim of this work was to use bone anchored external markers to describe the kinematics of the tibia, fibula, talus, calcaneus, navicular, cuboid, medial cuneiform, first and fifth metatarsals during gait. Data were collected from six subjects. There was motion at all the joints studied. Movement between the talus and the tibia showed the expected(More)
BACKGROUND For an accurate quadriceps angle measurement, the patella must be centralised in the femoral trochlear groove, numerous authors have described lateral displacement of the patella in patellofemoral pain patients, this leads to the intriguing possibility that the Q-angle might be undervalued within patellofemoral pain patients who have laterally(More)
An accurate kinematic description of the intrinsic articulations of the foot during running has not previously been presented, primarily due to methodological limitations. An invasive method based upon reflective marker arrays mounted on intracortical pins drilled into the bones was used in this study. Four male volunteers participated as subjects. Pins(More)
Functional units in the human foot provide a meaningful basis for subdivisions of the entire foot during gait analysis as well as justified simplifications of foot models. The present study aimed to identify such functional units during walking and slow running. An invasive method based upon reflective marker arrays mounted on intracortical pins was used to(More)
BACKGROUND Understanding the relationship between the lower leg muscles, foot structures and function is essential to explain how disease or injury may relate to changes in foot function and clinical pathology. The aim of this study was to investigate the inter-operator reliability of an ultrasound protocol to quantify features of: rear, mid and forefoot(More)
Lateral wedge orthoses are often prescribed to correct varus deformity after stroke. Spasticity is implicated in varus deformity and is caused by velocity-related muscle length changes, so a lateral wedge may affect spasticity by manipulating foot and ankle kinematics which, in turn, may alter the length of these muscles. We sought to test this theory in(More)
Pelvic tilt is often quantified using the angle between the horizontal and a line connecting the anterior superior iliac spine (ASIS) and the posterior superior iliac spine (PSIS). Although this angle is determined by the balance of muscular and ligamentous forces acting between the pelvis and adjacent segments, it could also be influenced by variations in(More)
Pathologies of foot and ankle structures affect the kinematics at the site of the impaired structure but also influence kinematics elsewhere in the foot and ankle. An understanding of kinematic coupling relationships in the foot could provide insight into mechanisms that explain differences in foot and ankle kinematics between healthy and pathological(More)
OBJECTIVES To evaluate how physiotherapists are trained in and use clinically orientated gait assessment tools and instrumented gait analysis, and to identify if a need exists for a standardized methodology. DESIGN Survey. SETTING UK National Health Service. PARTICIPANTS Physiotherapists working with a variety of patient groups in 210 randomly(More)
Magnetic resonance (MR) imaging is becoming increasingly important in the study of foot biomechanics. Specific devices have been constructed to load and position the foot while the subject is lying supine in the scanner. The present study examines the efficacy of such a newly developed device in replicating tarsal kinematics seen during the more commonly(More)