Learn More
In this paper we present a novel fabrication technique for silicon nitride (Si(3)N(4)) waveguides with a thickness of up to 900 nm, which are suitable for nonlinear optical applications. The fabrication method is based on etching trenches in thermally oxidized silicon and filling the trenches with Si(3)N(4). Using this technique no stress-induced cracks in(More)
We report on the theoretical basis and first experimental results of a new method based on optical nonlinearity, for characterising crystallinity and polymorphism of pharmaceuticals in the solid state. Once the theoretical basis of optical nonlinearity of crystalline structures is established, a new and rapid method based on this physical theory can be(More)
With the development of stable, compact and reliable pulsed laser sources the field of characterizing materials through their nonlinear optical response has bloomed. Second harmonic generation by non-centrosymmetric crystal structures has provided a new spectroscopic tool of potentially great utility in the pharmaceutical field. The nonlinear optical(More)
In this paper, we report improvements to a previously developed method based on optical nonlinearity for characterizing polymorphism and concentration of pharmaceuticals in powdered and tablet form. An apparatus that measures the nonlinear optical response of a sample through second harmonic generation (SHG) is described. The response of several enalapril(More)
BACKGROUND The authors evaluated the effectiveness of using a patient simulator (MARC Patient Simulator [MARC PS], BlueLight analytics, Halifax, Nova Scotia, Canada), to instruct dental students (DS) on how to deliver energy optimally to a restoration from a curing light. Five months later, the authors evaluated the retention of the instruction provided to(More)
We report ultra-broadband supercontinuum generation in high-confinement Si3N4 integrated optical waveguides. The spectrum extends through the visible (from 470 nm) to the infrared spectral range (2130 nm) comprising a spectral bandwidth wider than 495 THz, which is the widest supercontinuum spectrum generated on a chip.
INTRODUCTION Access to promising radiometals as isotopes for novel molecular imaging agents requires that they are routinely available and inexpensive to obtain. Proximity to a cyclotron center outfitted with solid target hardware, or to an isotope generator for the metal of interest is necessary, both of which can introduce significant hurdles in(More)
We theoretically investigate a scheme to obtain sub-diffraction-limited resolution in coherent anti-Stokes Raman scattering (CARS) microscopy. We find using density matrix calculations that the rise of vibrational (Raman) coherence can be strongly suppressed, and thereby the emission of CARS signals can be significantly reduced, when pre-populating the(More)
In this paper, we detect and characterize the carbon contamination layers that are formed during the illumination of extreme ultraviolet (EUV) multilayer mirrors. The EUV induced carbon layers were characterized ex situ using spectroscopic ellipsometry (SE) and laser generated surface acoustic waves (LG-SAW). We show that both LG-SAW and SE are very(More)
OBJECTIVE To measure the light energy that dental students delivered to a simulated Class I restoration before training, immediately after training and 4 months after training. METHODS Thirty-eight (38) dental students used a single light-emitting diode curing light (SmartLite iQ2, Dentsply) to cure, for 10 seconds, a simulated Class I restoration(More)