Learn More
Plants produce a wide array of natural products, many of which are likely to be useful bioactive structures. Unfortunately, these complex natural products usually occur at very low abundance and with restricted tissue distribution, thereby hindering their evaluation. Here, we report a novel approach for enhancing the accumulation of natural products based(More)
Microbial elicitors or attempted infection with an avirulent pathogen strain causes the rapid production of reactive oxygen intermediates. We report here that H2O2 from this oxidative burst not only drives the cross-linking of cell wall structural proteins, but also functions as a local trigger of programmed death in challenged cells and as a diffusible(More)
Activation tagging using T-DNA vectors that contain multimerized transcriptional enhancers from the cauliflower mosaic virus (CaMV) 35S gene has been applied to Arabidopsis plants. New activation-tagging vectors that confer resistance to the antibiotic kanamycin or the herbicide glufosinate have been used to generate several tens of thousands of transformed(More)
Recognition of an avirulent pathogen stimulates an oxidative burst generating O2- and H2O2, and these reactive oxygen intermediates (ROIs) cue the induction of defense genes and cell death in the development of a restricted lesion. This localized hypersensitive response (HR) is accompanied by the development of systemic acquired resistance to virulent(More)
Recognition of an avirulent pathogen triggers the rapid production of the reactive oxygen intermediates superoxide (O2-) and hydrogen peroxide (H2O2). This oxidative burst drives crosslinking of the cell wall, induces several plant genes involved in cellular protection and defence, and is necessary for the initiation of host cell death in the hypersensitive(More)
A single genomic clone (14 kb) isolated from bean (Phaseolus vulgaris L.) contains two genes that encode glycine-rich proteins. These genes are present as single copies in the genome, are separated by 2.85 kb and encode transcripts of 1.8 kb and 1.0 kb respectively. The encoded proteins contain 60% glycine and have amino-terminal signal peptides. The 1.8 kb(More)
The phenylpropanoid-derived natural product salicylic acid (SA) plays a key role in disease resistance. However, SA administered in the absence of a pathogen is a paradoxically weak inductive signal, often requiring concentrations of 0.5 to 5 mM to induce acquired resistance or related defense mechanisms or to precondition signal systems. In contrast,(More)
Nitric oxide (NO) and reactive oxygen intermediates (ROIs) play key roles in the activation of disease resistance mechanisms both in animals and plants. In animals NO cooperates with ROIs to kill tumor cells and for macrophage killing of bacteria. Such cytotoxic events occur because unregulated NO levels drive a diffusion-limited reaction with O(2)(-) to(More)
Treatment of bean or soybean cells with fungal elicitor or glutathione causes a rapid insolubilization of preexisting (hydroxy)proline-rich structural proteins in the cell wall. This insolubilization, which involves H2O2-mediated oxidative cross-linking, is initiated within 2 min and is complete within 10 min under optimal conditions, and hence, precedes(More)
Localized attack by a necrotizing pathogen induces systemic acquired resistance (SAR) to subsequent attack by a broad range of normally virulent pathogens. Salicylic acid accumulation is required for activation of local defenses, such as pathogenesis-related protein accumulation, at the initial site of attack, and for subsequent expression of SAR upon(More)