Learn More
The use of transfection in the study of the biology of malaria parasites has been limited due to poor transfection efficiencies (frequency of 10(-6) to 10(-9)) and a paucity of selection markers. Here, a new method of transfection, using non-viral Nucleofector technology, is described for the rodent parasite Plasmodium berghei. The transfection efficiency(More)
Anopheles mosquitoes are major vectors of human malaria in Africa. Large variation exists in the ability of mosquitoes to serve as vectors and to transmit malaria parasites, but the molecular mechanisms that determine vectorial capacity remain poorly understood. We report that the hemocyte-specific complement-like protein TEP1 from the mosquito Anopheles(More)
Green fluorescent protein (GFP) is a well-established reporter protein for the examination of biological processes. This report describes a recombinant Plasmodium berghei, PbGFPCON, that constitutively expresses GFP in a growth responsive manner in its cytoplasm from a transgene that is integrated into the genome and controlled by the strong promoter from a(More)
Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA(More)
Plasmodium berghei and Plasmodium chabaudi are widely used model malaria species. Comparison of their genomes, integrated with proteomic and microarray data, with the genomes of Plasmodium falciparum and Plasmodium yoelii revealed a conserved core of 4500 Plasmodium genes in the central regions of the 14 chromosomes and highlighted genes evolving rapidly(More)
Gametocytes, the precursor cells of malaria-parasite gametes, circulate in the blood and are responsible for transmission from host to mosquito vector. The individual proteomes of male and female gametocytes were analyzed using mass spectrometry, following separation by flow sorting of transgenic parasites expressing green fluorescent protein, in a(More)
This protocol describes a method of genetic transformation for the rodent malaria parasite Plasmodium berghei with a high transfection efficiency of 10(-3)-10(-4). It provides methods for: (i) in vitro cultivation and purification of the schizont stage;(ii) transfection of DNA constructs containing drug-selectable markers into schizonts using the nonviral(More)
Sequestration of malaria-parasite-infected erythrocytes in the microvasculature of organs is thought to be a significant cause of pathology. Cerebral malaria (CM) is a major complication of Plasmodium falciparum infections, and PfEMP1-mediated sequestration of infected red blood cells has been considered to be the major feature leading to CM-related(More)
Whole-genome comparisons are highly informative regarding genome evolution and can reveal the conservation of genome organization and gene content, gene regulatory elements, and presence of species-specific genes. Initial comparative genome analyses of the human malaria parasite Plasmodium falciparum and rodent malaria parasites (RMPs) revealed a core set(More)
Cerebral malaria (CM) is a serious complication of Plasmodium falciparum infection that is responsible for a significant number of deaths in children and nonimmune adults. A failure to control blood parasitemia and subsequent sequestration of parasites to brain microvasculature are thought to be key events in many CM cases. Here, we show for the first time,(More)