Chris Hostetler

Learn More
A compact, highly robust airborne High Spectral Resolution Lidar (HSRL) that provides measurements of aerosol backscatter and extinction coefficients and aerosol depolarization at two wavelengths has been developed, tested, and deployed on nine field experiments (over 650 flight hours). A unique and advantageous design element of the HSRL system is the(More)
Descriptions are provided of the aerosol classification algorithms and the extinction-to-backscatter ratio (lidar ratio) selection schemes for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol products. One year of CALIPSO level 2 version 2 data are analyzed to assess the veracity of the CALIPSO aerosol-type(More)
The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired extensive datasets of aerosol extinction (532 nm), aerosol optical depth (AOD) (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 18 field missions that have been conducted over North(More)
The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite will be launched in April of 2005, and will make continuous measurements of the Earth's atmosphere for the following three years. Retrieving the spatial and optical properties of clouds and aerosols from the CALIPSO lidar backscatter data will be confronted by a(More)
The NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission was conducted in two 3-week deployments based in Alaska (April 2008) and western Canada (June–July 2008). Its goal was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1) influx of(More)
Detailed modeling of mountain wave PSCs S. Fueglistaler, S. Buss, B. P. Luo, H. Wernli, H. Flentje, C. A. Hostetler, L. R. Poole, K. S. Carslaw, and Th. Peter Atmospheric and Climate Science, ETH Zürich, Switzerland DLR Oberpfaffenhofen, 82230 Wessling, Germany NASA Langley Research Center, Hampton, VA, USA School of the Environment, Univ. of Leeds, Leeds,(More)
We present measurements acquired by the world’s first airborne 3 backscatter (β)+2 extinction (α) High Spectral Resolution Lidar (HSRL-2). HSRL-2 measures particle backscatter coefficients at 355, 532, and 1064 nm, and particle extinction coefficients at 355 and 532 nm. The instrument has been developed by the NASA Langley Research Center. The instrument(More)
[1] Recent studies utilizing satellite retrievals have shown a strong correlation between aerosol optical depth (AOD) and cloud cover. However, these retrievals from passive sensors are subject to many limitations, including cloud adjacency (or three-dimensional) effects, possible cloud contamination, uncertainty in the AOD retrieval. Some of these(More)
The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) measures vertical profiles of aerosol extinction, backscatter, and depolarization at both 532 nm and 1064 nm. In March of 2006 the HSRL participated in the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign along with several other suites of(More)