Chris Field

Learn More
It has long been recognized that the rates of molecular evolution vary amongst sites in proteins. The usual model for rate heterogeneity assumes independent rate variation according to a rate distribution. In such models the rate at a site, although random, is assumed fixed throughout the evolutionary tree. Recent work by several groups has suggested that(More)
Previous work has shown that it is often essential to account for the variation in rates at different sites in phylogenetic models in order to avoid phylogenetic artifacts such as long branch attraction. In most current models, the gamma distribution is used for the rates-across-sites distributions and is implemented as an equal-probability discrete gamma.(More)
In this paper, several different procedures for constructing confidence regions for the true evolutionary tree are evaluated both in terms of coverage and size without considering model misspecification. The regions are constructed on the basis of tests of hypothesis using six existing tests: Shimodaira Hasegawa (SH), SOWH, star form of SOWH (SSOWH),(More)
State-space models (SSMs) are increasingly used in ecology to model time-series such as animal movement paths and population dynamics. This type of hierarchical model is often structured to account for two levels of variability: biological stochasticity and measurement error. SSMs are flexible. They can model linear and nonlinear processes using a variety(More)
Whole-genome or multiple gene phylogenetic analysis is of interest since single gene analysis often results in poorly resolved trees. Here, the use of spectral techniques for analyzing multigene data sets is explored. The protein sequences are treated as categorical time series, and a measure of similarity between a pair of sequences, the spectral(More)
We present a simple and effective method for combining distance matrices from multiple genes on identical taxon sets to obtain a single representative distance matrix from which to derive a combined-gene phylogenetic tree. The method applies singular value decomposition (SVD) to extract the greatest common signal present in the distances obtained from each(More)
  • 1