Chris E Finlayson

Learn More
Deposition of semiconductors and metals from chemical precursors onto planar substrates is a well-developed science and technology for microelectronics. Optical fibers are an established platform for both communications technology and fundamental research in photonics. Here, we describe a hybrid technology that integrates key aspects of both engineering(More)
We report time-of-flight experiments on photonic-crystal waveguide structures using optical Kerr gating of a femtosecond white-light supercontinuum. These photonic-crystal structures, based on engineered silicon-nitride slab waveguides, possess broadband low-loss guiding properties, allowing the group velocity dispersion of optical pulses to be directly(More)
We use elastically induced phase transitions to break the structural symmetry of self-assembled nanostructures, producing significantly modified functional properties. Stretching ordered polymer opals in different directions transforms the fcc photonic crystal into correspondingly distorted monoclinic lattices. This breaks the conventional selection rules(More)
Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical(More)
Using a new technique for single-domain shear-ordering of elastomeric photonic crystals we demonstrate novel opto-elastic properties. Tensile stress experiments demonstrate coupled mechanical and optical anisotropy, producing striking colour tuning depending on the stretch direction.
  • 1