Chris Ballhaus

Learn More
Experiments in sulfide-silicate systems demonstrate that two sulfide phases are stable in the asthenospheric upper mantle: a crystalline osmium-iridium-ruthenium-enriched monosulfide and a rhodium-platinum-palladium-enriched sulfide melt. During silicate melt segregation, monosulfide stays in the solid residue, dominating the noble metal spectrum of(More)
The oxygen fugacity f(O2)of the Earth's mantle is one of the fundamental variables in mantle petrology. Through ferric-ferrous iron and carbon-hydrogen-oxygen equilibria, f(O2) influences the pressure-temperature positions of mantle solidi and compositions of small-degree mantle melts. Among other parameters, f(O2) affects the water storage capacity and(More)
Relative to the CI chondrite class of meteorites (widely thought to be the 'building blocks' of the terrestrial planets), the Earth is depleted in volatile elements. For most elements this depletion is thought to be a solar nebular signature, as chondrites show depletions qualitatively similar to that of the Earth. On the other hand, as lead is a volatile(More)
Fourier Transform infrared (FTIR) absorption spectra of hydroxyl were measured on olivine phenocrysts from hydrous basaltic melts that originated in island-arc tectonic settings. The basaltic melts encompass a wide range of silica activities from orthopyroxene-saturated hypersthene-normative to nepheline-normative compositions. The intensities and(More)
In low temperature aqueous solutions, it has long been recognized by in situ experiments that many minerals are preceded by crystalline nanometre-sized particles and non-crystalline nanophases. For magmatic systems, nanometre-sized precursors have not yet been demonstrated to exist, although the suggestion has been around for some time. Here we demonstrate(More)
  • 1