Learn More
Identifying residue coupling relationships within a protein family can provide important insights into the family's evolutionary record, and has significant applications in analyzing and optimizing sequence-structure-function relationships. We present the first algorithm to infer an undirected graphical model representing residue coupling in protein(More)
The problem of moving rigid bodies efficiently is of particular interest in robotics because the simplest model of a mobile robot or of a manipulated object is often a rigid body. Path planning, controller design and robot design may all benefit from precise knowledge of optimal trajectories for a set of permitted controls. In this work, we present a(More)
Structural studies of symmetric homo-oligomers provide mechanistic insights into their roles in essential biological processes, including cell signaling and cellular regulation. This paper presents a novel algorithm for homo-oligomeric structure determination, given the subunit structure, that is both complete, in that it evaluates all possible(More)
MOTIVATION Complementing its traditional role in structural studies of proteins, nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in functional studies. NMR dynamics experiments characterize motions involved in target recognition, ligand binding, etc., while NMR chemical shift perturbation experiments identify and(More)
Active data mining is becoming prevalent in applications requiring focused sampling of data relevant to a high-level mining objective. It is especially pertinent in scientific and engineering applications where we seek to characterize a configuration space or design space in terms of spatial aggregates, and where data collection can become costly. Examples(More)
Structural motifs encapsulate local sequence-structure-function relationships characteristic of related proteins, enabling the prediction of functional characteristics of new proteins, providing molecular-level insights into how those functions are performed, and supporting the development of variants specifically maintaining or perturbing function in(More)
Advances in the field of T cell immunology have contributed to the understanding that cross-reactivity is an intrinsic characteristic of the T cell receptor (TCR), and that each TCR can potentially interact with many different T cell epitopes. To better define the potential for TCR cross-reactivity between epitopes derived from the human genome, the human(More)
Protein-protein interactions are governed by the change in free energy upon binding, ΔG = ΔH - TΔS. These interactions are often marginally stable, so one must examine the balance between the change in enthalpy, ΔH, and the change in entropy, ΔS, when investigating known complexes, characterizing the effects of mutations, or designing optimized variants. To(More)
The human phase 2B RV144 ALVAC-HIV vCP1521/AIDSVAX B/E vaccine trial, held in Thailand, resulted in an estimated 31.2% efficacy against HIV infection. By contrast, vaccination with VAX003 (consisting of only AIDSVAX B/E) was not protective. Because protection within RV144 was observed in the absence of neutralizing antibody activity or cytotoxic T cell(More)
High-throughput, data-directed computational protocols for <i>Structural Genomics</i> (or <i>Proteomics</i>) are required in order to evaluate the protein products of genes for structure and function at rates comparable to current gene-sequencing technology. This paper presents the JIGSAW algorithm, a novel high-throughput, automated approach to protein(More)