Chongguang Yang

Learn More
BACKGROUND Drug-resistant tuberculosis poses a growing challenge to global public health. However, the diversity and dynamics of the bacterial population during acquisition of drug resistance have yet to be carefully examined. METHODS Whole-genome sequencing was performed on 7 serial Mycobacterium tuberculosis (M. tuberculosis) populations from 3 patients(More)
BACKGROUND Staphylococcus epidermidis is a common cause of nosocomial infections worldwide. This study analyzed the differences in genetic endowment and clonal lineages with pathogenesis and resistance traits of S. epidermidis isolates collected from community and hospital environments (patients and healthcare staff) of the same ecological niche, time(More)
The standard 15- and 24-locus variable-number tandem repeat (VNTR) genotyping methods have demonstrated adequate discriminatory power and a small homoplasy effect for tracing tuberculosis (TB) transmission and predicting Mycobacterium tuberculosis lineages in European and North American countries. However, its validity for the definition of transmission in(More)
BACKGROUND Understanding the transmission of Mycobacterium tuberculosis is essential for the development of efficient tuberculosis control strategies. China has the second-largest tuberculosis burden in the world. Recent transmission and infection with M. tuberculosis, particularly drug-resistant strains, may account for many new tuberculosis cases. (More)
BACKGROUND The Mycobacterium tuberculosis Beijing strains are widespread globally. We aimed to determine whether Beijing strains in China are more likely than other strains to spread, and whether they are more likely to become drug resistant. We also sought to determine whether different Beijing sublineages have distinct phenotypic characteristics. (More)
The Beijing family is the most successful genotype of Mycobacterium tuberculosis and responsible for more than a quarter of the global tuberculosis epidemic. As the predominant genotype in East Asia, the Beijing family has been emerging in various areas of the world and is often associated with disease outbreaks and antibiotic resistance. Revealing the(More)
Whole genome sequencing (WGS) of Mycobacterium tuberculosis has been used to trace the transmission of M. tuberculosis, the causative agent of tuberculosis (TB). Previously published studies using WGS were conducted in developed countries with a low TB burden. We sought to evaluate the relative usefulness of traditional VNTR and SNP typing methods, WGS and(More)
Molecular typing based on variable-number tandem repeats (VNTR) analysis is a promising tool for identifying transmission of Mycobacterium tuberculosis. However, the currently proposed 15- and 24-locus VNTR sets (VNTR-15/24) only have limited resolution and contain too many loci for large-scale typing in high burden countries. To develop an optimal typing(More)
BACKGROUND Multidrug-resistance is a substantial threat to global elimination of tuberculosis. Understanding transmission patterns is crucial for control of the disease. We used a genomic and epidemiological approach to assess recent transmission of multidrug-resistant (MDR) tuberculosis and identify potential risk factors for transmission. METHODS We did(More)
By using VNTR genotyping, mixed infections of Mycobacterium tuberculosis were detected in 11.2% of cases in a prospective study in Heilongjiang China, a setting with a high prevalence (87.5%) of Beijing family strains. If only one sputum sample had been collected, the study would have underestimated the fraction of mixed infections by 50%.