Chong-ling Feng

Learn More
Lead, as one of the most hazardous heavy metals to the environment interferes with lignocellulosic biomass bioconversion and carbon cycles in nature. The degradation of lead-polluted lignocellulosic waste and the restrain of lead hazards by solid-state fermentation with Phanerochaete chrysosporium were studied. Phanerochaete chrysosporium effectively(More)
The bioremediation of the simulated lead (Pb)-contaminated soils by incubating with Phanerochaete chrysosporium and straw was studied at laboratory-scale. The soil pH, Pb concentration, soil microbial biomass, microbial metabolic quotient, microbial quotient and microbial biomass C-to-N ratios were monitored. The above indicators were to study the stress of(More)
Microbial populations and their relationship to bioconversion during lignocellulosic waste composting were studied by quinone profiling. Nine quinones were observed in the initial composting materials, and 15 quinones were found in compost after 50days of composting. The quinone species Q-9(H2), Q-10 and Q-10(H2) which are indicative of certain fungi(More)
Lignocellulosic biomass is an abundant renewable resource difficult to degrade. Its bioconversion plays important roles in carbon cycles in nature, which may be influenced by heavy metals in environment. Mycelial growth and the degradation of lignocellulosic waste by lignin-degrading fungus Phanerochaete chrysosporium under lead stress were studied. It was(More)
The production of oxalate at different initial Pb(2+) concentrations during solid-state fermentation of straw with Phanerochaete chrysosporium was investigated. It was found that the maximal peak value of oxalate concentration (22.84 mM) was detected at the initial Pb(2+) concentration of 200 mg kg(-1) dry straw, while the minimum (15.89 mM) at the(More)
This work developed a relatively inexpensive and layers-film construction electrochemical sensor for DNA recognition and its performance was investigated. The Fe(3)O(4) magnetic nanoparticles-cysteine were immobilized on the carbon paste electrode (CPE) surface using magnetic force. Multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (GNPs), and(More)
Simulative lead polluted wastes which containing unpolluted soil, household waste, straw, bran and lead nitrate were prepared. Inoculation of white-rot fungi and uninoculation in composting of lead-contaminated waste were studied. Change of chemical factor, biological parameter and biological toxicity analyses with time during the composting process were(More)
The effects of enzymes on organic material degradation and microbial communities metabolic profiles during composting process were studied using Biolog method, and together with cluster analysis and PCA. The results showed that, adding the enzyme solution in the composting could increase the degradation rate of organic material by 4.90%. The microbial(More)
Picloram is a widely used chlorinated herbicide, which is quite persistent and mobile in soil and water with adverse health and environmental risks. A simple and efficient method with high sensitivity and good selectivity was developed in this work to analyze picloram. The aldehyde group functionalized quartz glass plate was used to catch picloram by Schiff(More)
To understand the characteristics of ligninolytic enzymes sorption and transport in different compost substances, ligninolytic enzymes adsorption on soil, vegetable leaf, rice straw and chaff was comparatively studied through batch jar tests and relevant kinetics and isotherm equilibrium were discussed as well as a column experiment was performed to study(More)
  • 1