Learn More
Different imaging modalities provide essential complementary information that can be used to enhance our understanding of brain disorders. This study focuses on integrating multiple imaging modalities to identify individuals at risk for mild cognitive impairment (MCI). MCI, often an early stage of Alzheimer's disease (AD), is difficult to diagnose due to(More)
In this paper, a high-dimensional pattern classification framework, based on functional associations between brain regions during resting-state, is proposed to accurately identify MCI individuals from subjects who experience normal aging. The proposed technique employs multi-spectrum networks to characterize the complex yet subtle blood oxygenation level(More)
This article describes a novel approach to identify autism spectrum disorder (ASD) utilizing regional and interregional morphological patterns extracted from structural magnetic resonance images. Two types of features are extracted to characterize the morphological patterns: (1) Regional features, which includes the cortical thickness, volumes of cortical(More)
Mild cognitive impairment (MCI), often a prodromal phase of Alzheimer's disease (AD), is frequently considered to be a good target for early diagnosis and therapeutic interventions of AD. Recent emergence of reliable network characterization techniques has made it possible to understand neurological disorders at a whole-brain connectivity level.(More)
Previous studies have demonstrated that the use of integrated information from multi-modalities could significantly improve diagnosis of Alzheimer's Disease (AD). However, feature selection, which is one of the most important steps in classification, is typically performed separately for each modality, which ignores the potentially strong inter-modality(More)
The objective of this study is to evaluate machine learning algorithms aimed at predicting surgical treatment outcomes in groups of patients with temporal lobe epilepsy (TLE) using only the structural brain connectome. Specifically, the brain connectome is reconstructed using white matter fiber tracts from presurgical diffusion tensor imaging. To achieve(More)
This article describes a novel approach to extract cortical morphological abnormality patterns from structural magnetic resonance imaging (MRI) data to improve the prediction accuracy of Alzheimer's disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). Conventional approaches extract cortical morphological information, such as(More)
Mild cognitive impairment (MCI) is difficult to diagnose due to its subtlety. Recent emergence of advanced network analysis techniques utilizing resting-state functional Magnetic Resonance Imaging (rs-fMRI) has made the understanding of neurological disorders more comprehensively at a whole-brain connectivity level. However, inferring effective brain(More)