Chong-Heng Shen

  • Citations Per Year
Learn More
Li-rich layered oxide 0.5Li2MnO3·0.5LiNi0.292Co0.375Mn0.333O2 was prepared by an aqueous solution-evaporation route. X-ray powder diffraction (XRD) showed that the as-synthesized material was a solid solution consisting of layered α-NaFeO2-type LiMO2 (M = Ni, Co, Mn) and monoclinic Li2MnO3. The superlattice spots in the selected area electron diffraction(More)
In this work, the Li-rich oxide Li1.23Ni0.09Co0.12Mn0.56O2 was synthesized through a facile route called aqueous solution-evaporation route that is simple and without waste water. The as-prepared Li1.23Ni0.09Co0.12Mn0.56O2 oxide was confirmed to be a layered LiMO2-Li2MnO3 solid solution through ex situ X-ray diffraction (ex situ XRD) and transmission(More)
Li3VO4 has been regarded as a new-type anode of lithium-ion batteries in recent years, which has a high theoretical specific capacity of 394 mAh g(-1), a proper potential for Li(+) insertion/deinsertion (∼1 V), and a good rate capacity. However, its low initial Coulombic efficiency, poor conductivity, and poor cycle performance restricts its development. In(More)
Hierarchical Mn2O3 hollow microspheres of diameter about 6-10 μm were synthesized by solvent-thermal method. When serving as anode materials of LIBs, the hierarchical Mn2O3 hollow microspheres could deliver a reversible capacity of 580 mAh g(-1) at 500 mA g(-1) after 140 cycles, and a specific capacity of 422 mAh g(-1) at a current density as high as 1600(More)
LiNi0.5Co0.2Mn0.3O2 positive electrode materials of lithium ion battery can release a discharge capacity larger than 200 mAh/g at high potential (>4.30 V). However, its inevitable capacity fading, which is greatly related to the structural evolution, reduces the cycling performance. The origin of this capacity fading is investigated by coupled in situ(More)
The nickel-rich layered oxide materials have been selected as promising cathode materials for the next generation lithium ion batteries because of their large capacity and comparably high operating voltage. However, at high voltage (beyond 4.30 V vs Li/Li+), the members of this family are all suffering from a rapid capacity decay, which was commonly(More)
  • 1