Chockalingam Veerappan

Learn More
Image sensors capable of resolving the time-of-arrival (ToA) of individual pho-tons with high resolution are needed in several applications, such as fluores-cence lifetime imaging microscopy (FLIM), Förster resonance energy transfer (FRET), optical rangefinding, and positron emission tomography. In FRET, for example, typical fluorescence lifetime is of the(More)
Abstract–Digital SiPMs in the recent past have emerged as a viable low cost alternative to PMTs providing higher granularity and MRI compatibility. The rich dataset generated by digital SiPM sensors have posed a challenge, especially at the system level when a multitude of such sensors are to be used. In this paper we present a sensor network based(More)
1 – This paper is the first comprehensive presentation of the SPADnet concept. SPADnet is a fully digital, networked MRI compatible time-of-flight PET system, exploiting the speed and integration density of deep-submicron CMOS technologies. The core enabling technologies of SPADnet are a sensor device comprising an array of 8x16 pixels, each composed of 4(More)
SPADnet is aimed at a new generation of fully digital, scalable and networked photonic components to enable large area image sensors, with primary target gamma-ray and coincidence detection in (Time-of-Flight) PET. The SPADnet photonic module, which lies at the heart of the concept, is built around an array of tessellated single-photon TSV sensor chips,(More)
  • 1