Chloë E. James

Learn More
Gram-negative bacteria are responsible for a large proportion of antibiotic-resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds,(More)
OBJECTIVE OATP1B1 and OATP1B3 are major hepatic drug transporters whilst OATP1A2 is mainly located in the brain but is also located in liver and several other organs. These transporters affect the distribution and clearance of many endobiotics and xenobiotics and have been reported to have functional single nucleotide polymorphisms (SNPs). We have assessed(More)
BACKGROUND Multi-drug resistant (MDR) infections have become a major concern in hospitals worldwide. This study investigates membrane translocation, which is the first step required for drug action on internal bacterial targets. beta-lactams, a major antibiotic class, use porins to pass through the outer membrane barrier of Gram-negative bacteria. Clinical(More)
The pathogenicity of Shiga-like toxin (stx)-producing Escherichia coli (STEC), notably serotype O157, the causative agent of hemorrhagic colitis, hemolytic-uremic syndrome, and thrombotic thrombocytopenic purpura, is based partly on the presence of genes (stx(1) and/or stx(2)) that are known to be carried on temperate lambdoid bacteriophages. Stx phages(More)
Bacterial adaptation to external stresses and toxic compounds is a key step in the emergence of multidrug-resistant strains that are a serious threat to human health. Although some of the proteins and regulators involved in antibiotic resistance mechanisms have been described, no information is available to date concerning the early bacterial response to(More)
Porphyromonas gingivalis can inhibit chemically induced apoptosis in primary cultures of gingival epithelial cells through blocking activation of the effector caspase-3. The anti-apoptotic phenotype of P. gingivalis is conserved across strains and does not depend on the presence of fimbriae, as fimbriae-deficient mutants and a naturally occurring(More)
In Enterobacteriaceae, membrane permeability is a key in the level of susceptibility to antibiotics. Modification of the bacterial envelope by decreasing the porin production or increasing the expression of efflux pump systems has been reported. These phenomena are frequently associated with other resistance mechanisms such as alteration of antibiotics or(More)
Background: Multi-drug resistant (MDR) infections have become a major concern in hospitals worldwide. This study investigates membrane translocation, which is the first step required for drug action on internal bacterial targets. b-lactams, a major antibiotic class, use porins to pass through the outer membrane barrier of Gram-negative bacteria. Clinical(More)
Infection of Escherichia coli by Shiga toxin-encoding bacteriophages (Stx phages) was the pivotal event in the evolution of the deadly Shiga toxin-encoding E. coli (STEC), of which serotype O157:H7 is the most notorious. The number of different bacterial species and strains reported to produce Shiga toxin is now more than 500, since the first reported STEC(More)
  • 1