Chitrangada Das Mukhopadhyay

Learn More
Major gaps in our knowledge of pathogen genes and how these gene products interact with host gene products to cause disease represent a major obstacle to progress in vaccine and antiviral drug development for the herpesviruses. To begin to bridge these gaps, we conducted a dual analysis of Murine Cytomegalovirus (MCMV) and host cell transcriptomes during(More)
A reaction of N1,N3-bis(3-methoxysalicylidene) diethylenetriamine (H2Vd) and Zn(NO3)2·6H2O, ZnBr2, ZnI2 and Cd(NO3)2·4H2O in a methanol solution led to zinc and cadmium complexes of different nuclearities, [Zn2(Vd·H)2(X)2]·CH3OH (X = NO3, Br, I) [1a, 1b and 1c] and Cd3(Vd)2(NO3)2 (2). In 1(a-c), two H2Vd ligands bridge the two metal centers whereas in 2,(More)
A new BODIPY-azaindole based fluorescent sensor 1 was designed and synthesized as a new colorimetric and ratiometric fluorescent chemosensor for fluoride. The binding and sensing abilities of sensor 1 towards various anions were studied by absorption, emission and (1)H NMR titration spectroscopies. The spectral responses of 1 to fluoride in(More)
Misfolded β-sheet structures of proteins leading to neurodegenerative diseases like Alzheimer's disease (AD) and Parkinson's disease (PD) are in the spotlight since long. However, not much was known about the functional amyloids till the last decade. Researchers have become increasingly more concerned with the degree of involvement of these functional(More)
A new quinoline based sensor was developed and applied for the selective detection of Cd(2+) both in vitro and in vivo. The designed probe displays a straightforward approach for the selective detection of Cd(2+) with a prominent fluorescence enhancement along with a large red shift (∼38 nm), which may be because of the CHEF (chelation-enhanced(More)
The first ratiometric fluorescent probe for the detection of a nerve agent simulant was developed based on tandem phosphorylation and intramolecular cyclization, by which high sensitivity as well as large emission shift could be achieved.
A structurally characterized new oxo-chromene functionalized rhodamine derivative L1 exhibits high selectivity toward Sn(4+) by forming a 1:1 complex, among other biologically important metal ions, as studied by fluorescence, absorption, and HRMS spectroscopy. Complexing with Sn(4+) triggers the formation of a highly fluorescent ring-open form which is pink(More)
  • 1