Learn More
The tyrosine kinase c-Src is upregulated in various human cancers irrespective of its negative regulator Csk, but the regulatory mechanisms remain unclear. Here, we show that a lipid raft-anchored Csk adaptor, Cbp/PAG, is directly involved in controlling the oncogenicity of c-Src. Using Csk-deficient cells that can be transformed by c-Src overexpression, we(More)
The upregulation of Src family kinases (SFKs) has been implicated in cancer progression, but the molecular mechanisms regulating their transforming potentials remain unclear. Here we show that the transforming ability of all SFK members is suppressed by being distributed to the cholesterol-enriched membrane microdomain. All SFKs could induce cell(More)
Podosomes and invadopodia are actin-rich membrane protrusions that play a crucial role in cell adhesion and migration, and extracellular matrix remodeling in normal and cancer cells. The formation of podosomes and invadopodia is promoted by upregulation of some oncogenic molecules and is closely related to the invasive potential of cancer cells. However,(More)
OBJECTIVE Reactive oxygen species (ROS) is one of most important factors in impaired metabolism secretion coupling in pancreatic β-cells. We recently reported that elevated ROS production and impaired ATP production at high glucose in diabetic Goto-Kakizaki (GK) rat islets are effectively ameliorated by Src inhibition, suggesting that Src activity is(More)
The receptor tyrosine kinase Ror2 regulates cell migration by acting as a receptor or co-receptor for Wnt5a. Although Wnt5a has been implicated in the invasiveness of several types of tumors, the role of Ror2 in tumor invasion remains elusive. Here we show that osteosarcoma cell lines SaOS-2 and U2OS show invasive properties in vitro by activating(More)
The Src family of tyrosine kinases play pivotal roles in regulating cellular functions characteristic of multicellular animals, including cell-cell interactions, cell-substrate adhesion, and cell migration. To investigate the functional alteration of Src kinases during evolution from a unicellular ancestor to multicellular animals, we characterized Src(More)
The tyrosine kinase c-Src is upregulated in various human cancers, but the molecular mechanisms underlying c-Src-mediated tumor growth remain unclear. Here we examined the involvement of microRNAs in the c-Src-mediated tumor growth. Microarray profiling revealed that c-Src activation downregulates a limited set of microRNAs, including miR-99a, which targets(More)
The transmembrane adaptor protein Cbp (or PAG1) functions as a suppressor of Src-mediated tumor progression by promoting the inactivation of Src. The expression of Cbp is down-regulated in Src-transformed cells and in various human cancer cells, suggesting a potential role for Cbp as a tumor suppressor. However, the mechanisms underlying the down-regulation(More)
To elucidate the regulatory mechanism of cell transformation induced by c-Src tyrosine kinase, we performed a proteomic analysis of tyrosine phosphorylated proteins that interact with c-Src and/or its negative regulator Csk. The c-Src interacting proteins were affinity-purified from Src transformed cells using the Src SH2 domain as a ligand. LC-MS/MS(More)
Carboxy-terminal Src kinase (Csk) is a negative regulator of Src family kinases, which play pivotal roles in controlling cell adhesion, migration, and cancer progression. To elucidate the in vivo role of Csk in epithelial tissues, we conditionally inactivated Csk in squamous epithelia using the keratin-5 promoter/Cre-loxP system in mice. The mutant mice(More)