Chit-Kwan Lin

Learn More
We consider the problem of multi-hop content distribution over a wireless ad-hoc network. Such mechanisms are relevant to a broad spectrum of applications, but are particularly important to data broadcast in wireless distributed computing where speedy I/O is critical to overall performance. In this paper, we present Rainbow, a content distribution protocol(More)
We consider the problem of localizing wireless nodes in an outdoor, open-space environment, using ad-hoc radio ranging measurements, e.g., 802.11. We cast these ranging measurements as a set of distance constraints, thus forming an over-determined system of equations suitable for non-linear least squares optimization. However, ranging measurements are often(More)
Continuous fine-grain status monitoring of a cloud data center enables rapid response to anomalies, but handling the resulting torrent of data poses a significant challenge. As a solution, we propose CloudSense, a new switch design that performs in-network compression of status streams via compressive sensing. Using MapReduce straggler detection as an(More)
—We are interested in estimating the angle of arrival of an RF signal by using commercial-off-the-shelf (COTS) software-defined radios (SDRs). The proposed COTS-based approach has the advantages of flexibility, low cost and ease of deployment, but—unlike traditional phased antenna arrays in which elements are already phase-aligned—we face the challenge of(More)
In this paper, we use a finite-state model to predict the performance of the Transmission Control Protocol (TCP) over a varying wireless channel between an unmanned aerial vehicle (UAV) and ground nodes. As a UAV traverses its flight path, the wireless channel may experience periods of significant packet loss, successful packet delivery, and intermittent(More)
—We consider the problem of mitigating a highly varying wireless channel between a ground node transmitting to a small, low-altitude unmanned aerial vehicle (UAV) in a wireless mesh network. One approach is to use multiple receiver nodes on the UAV that exploit the channel's spatial/temporal diversity and that cooperate to improve overall packet reception.(More)
—Wireless data transfer under high mobility, as found in unmanned aerial vehicle (UAV) applications, is a challenge due to varying channel quality and extended link outages. We present FlowCode, an easily deployable link-layer solution utilizing multiple transmitters and receivers for the purpose of supporting existing transport protocols such as TCP in(More)
—We consider the problem of mitigating a highly varying wireless channel between a transmitting ground node and receivers on a small, low-altitude unmanned aerial vehicle (UAV) in a 802.11 wireless mesh network. One approach is to use multiple transmitter and receiver nodes that exploit the channel's spatial/temporal diversity and that cooperate to improve(More)
Mobile device hardware can limit the sophistication of mobile applications. One strategy for side-stepping these constraints is to opportunistically offload computations to the cloud, where more capable hardware can do the heavy lifting. We propose a platform that accomplishes this via compressive offloading, a novel application of compressive sensing in a(More)
We present FlowCode, a system that exploits network coding at the granularity of traffic flows to facilitate fault-tolerant data exchange in wireless mesh networks. Applications include multi-site data replication in ad-hoc environments such as mesh networks or wireless data centers. By coupling an operand-driven transmission mechanism with a layered(More)