Chirag M. Ghevariya

Learn More
Degradation of chrysene, a four ring High Molecular Weight (HMW) Polycyclic Aromatic Hydrocarbon (PAH) is of intense environmental interest, being carcinogenic, teratogenic and mutagenic. Multiple PAH degrading halotolerant Achromobacter xylosoxidans was isolated from crude oil polluted saline site. Response Surface Methodology (RSM) using Central Composite(More)
Degradation of chrysene, a four ringed highly carcinogenic polycyclic aromatic hydrocarbon (PAH) has been demonstrated by bacterial mixed culture Biorem-CGBD comprising Achromobacter xylosoxidans, Pseudomonas sp. and Sphingomonas sp., isolated from crude oil polluted saline sites at Bhavnagar coast, Gujarat, India. A full factorial Central Composite Design(More)
Ability of Achromobacter xylosoxidans, a chrysene degrading marine halotolerant bacterium to degrade polycyclic aromatic hydrocarbons (PAHs) using a cost effective laboratory microcosm approach, was investigated. Effect of variables as chrysene, glucose as a co-substrate, Triton X-100 as a non-ionic surfactant and β-cyclodextrin as a PAHs solubilizer was(More)
For the first time, Cochliobolus lunatus strain CHR4D, a marine-derived ascomycete fungus isolated from historically contaminated crude oil polluted shoreline of Alang-Sosiya ship-breaking yard, at Bhavnagar coast, Gujarat has been reported showing the rapid and enhanced biodegradation of chrysene, a four ringed high molecular weight (HMW) polycyclic(More)
  • 1