Chio Mui Chan

Learn More
Ribotoxins kill cells by endonucleotically cleaving essential RNAs involved in protein translation. We report here that a stable heterotetramer composed of two bacterial proteins, Pnkp and Hen1, was able to repair transfer RNAs cleaved by ribotoxins in vitro. Before the broken RNAs were ligated by the heterotetramer, a methyl group was added to the 2'-OH(More)
Proteolytic control can govern the levels of specific regulatory factors, such as Spx, a transcriptional regulator of the oxidative stress response in Gram-positive bacteria. Under oxidative stress, Spx concentration is elevated and upregulates transcription of genes that function in the stress response. When stress is alleviated, proteolysis of Spx(More)
The Spx protein of Bacillus subtilis is a global regulator of the oxidative stress response. Spx concentration is controlled at the level of proteolysis by the ATP-dependent protease ClpXP and a substrate-binding protein, YjbH, which interacts with Spx. A yeast two-hybrid screen was carried out using yjbH as bait to uncover additional substrates or(More)
Ribotoxins cleave essential RNAs involved in protein synthesis as a strategy for cell killing. RNA repair systems exist in nature to counteract the lethal actions of ribotoxins, as first demonstrated by the RNA repair system from bacteriophage T4 25 yr ago. Recently, we found that two bacterial proteins, named Pnkp and Hen1, form a stable complex and are(More)
The global regulator, Spx, is under proteolytic control exerted by the adaptor YjbH and ATP-dependent protease ClpXP in Bacillus subtilis. While YjbH is observed to bind the Spx C-terminus, YjbH shows little affinity for ClpXP, indicating adaptor activity that does not operate by tethering. Chimeric proteins derived from B. subtilis AbrB and the Spx(More)
Ribotoxins cleave essential RNAs for cell killing in vivo, and the bacterial polynucleotide kinase-phosphatase (Pnkp)/hua enhancer 1 (Hen1) complex has been shown to repair ribotoxin-cleaved RNAs in vitro. Bacterial Pnkp/Hen1 is distinguished from other RNA repair systems by performing 3'-terminal 2'-O-methylation during RNA repair, which prevents the(More)
Pseudouridine (Psi) is formed through isomerization of uridine (U) catalyzed by a class of enzymes called pseudouridine synthases (PsiS). TruD is the fifth family of PsiS. Studies of the first four families (TruA, TruB, RsuA, and RluA) of PsiS reveal a conserved Asp and Tyr are critical for catalysis. However, in TruD family, the tyrosine is not conserved.(More)
  • 1