Chinnasamy Gandhimathi

Learn More
Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain(More)
Nanotechnology and tissue engineering have enabled engineering of nanostructured strategies to meet the current challenges in skin tissue regeneration. Electrospinning technology creates porous nanofibrous scaffolds to mimic extracellular matrix of the native tissues. The present study was performed to gain some insights into the applications of(More)
Mimicking hybrid extracellular matrix is one of the main challenges for bone tissue engineering (BTE). Biocompatible polycaprolactone/poly(α,β)-DL-aspartic acid/collagen nanofibrous scaffolds were fabricated by electrospinning and nanohydroxyapatite (n-HA) was deposited by calcium phosphate dipping method for BTE. Human mesenchymal stem cells (hMSCs) were(More)
Pharmaceutically active compounds require different modes of drug delivery systems to accomplish therapeutic activity without loss of its activity and lead to exhibit no adverse effects. Originating from ancient days, pulmonary mode of drug delivery is gaining much importance compared to other modes of drug delivery systems with respect to specific(More)
Mimicking native extracellular matrix with electrospun porous bio-composite nanofibrous scaffolds has huge potential in bone tissue regeneration. The aim of this study is to fabricate porous poly(l-lactic acid)-co-poly-(ε-caprolactone)/silk fibroin/ascorbic acid/tetracycline hydrochloride (PLACL/SF/AA/TC) and nanohydroxyapatite (n-HA) was deposited by(More)
Generating porous topographic substrates, by mimicking the native extracellular matrix (ECM) to promote the regeneration of damaged bone tissues, is a challenging process. Generally, scaffolds developed for bone tissue regeneration support bone cell growth and induce bone-forming cells by natural proteins and growth factors. Limitations are often associated(More)
Poly(sulfobetaine methacrylate) (PSBMA) films known for their resistance to nonspecific protein adsorption, cell/bacterial adhesion and biofilm formation were produced by surface initiated polymerization on a silicon surface via a batch reaction system in CO2 expanded liquid (CO2-EL) medium. Atom transfer radical polymerization (ATRP) was carried out using(More)
Bone transplants are used to treat fractures and increase new tissue development in bone tissue engineering. Grafting of massive implantations showing slow curing rate and results in cell death for poor vascularization. The potentials of biocomposite scaffolds to mimic extracellular matrix (ECM) and including new biomaterials could produce a better(More)
Oxide-free silicon chemistry has been widely studied using wet-chemistry methods, but for emerging applications such as molecular electronics on silicon, nanowire-based sensors, and biochips, these methods may not be suitable as they can give rise to defects due to surface contamination, residual solvents, which in turn can affect the grafted monolayer(More)
Dental caries an ever growing public health problem is not much amenable to existing preventive measures. The aim of this study was to compare and evaluate the effectiveness of mouth rinse containing chicken egg yolk antibodies generated against whole cell antigen and cell associated glucosyltransferase enzyme (CA-GTF) of Streptococcus mutans in preventing(More)