Ching-man Au Yeung

Learn More
Some popular product review sites such as Epinions allow users to establish a trust network among themselves, indicating who they trust in providing product reviews and ratings. While trust relations have been found to be useful in generating personalised recommendations, the relations between trust and product ratings has so far been overlooked. In this(More)
With a suitable algorithm for ranking the expertise of a user in a collaborative tagging system, we will be able to identify experts and discover useful and relevant resources through them. We propose that the level of expertise of a user with respect to a particular topic is mainly determined by two factors. Firstly, an expert should possess a high quality(More)
Collaborative tagging systems are now popular tools for organising and sharing information on the Web. While collaborative tagging offers many advantages over the use of controlled vocabularies, they also suffer from problems such as the existence of polysemous tags. We investigate how the different contexts in which individual tags are used can be revealed(More)
The use of tags to describe Web resources in a collaborative manner has experienced rising popularity among Web users in recent years. The product of such activity is given the name folksonomy, which can be considered as a scheme of organizing information in the users’ own way. In this paper, we present a possible way to analyze the tripartite graphs –(More)
In this paper we discuss the notions of experts and expertise in resource discovery in the context of collaborative tagging systems. We propose that the level of expertise of a user with respect to a particular topic is mainly determined by two factors. Firstly, an expert should possess a high quality collection of resources, while the quality of a Web(More)
History helps us understand the present and even to predict the future to certain extent. Given the huge amount of data about the past, we believe computer science will play an increasingly important role in historical studies, with computational history becoming an emerging interdisciplinary field of research. We attempt to study how the past is remembered(More)
Online product reviews are increasingly important for consumer decisions, yet we still know little about how reviews are generated in the first place. In an effort to gather more reviews, many websites encourage user interactions such as allowing one user to subscribe to another. Do these interactions actually facilitate the generation of product reviews,(More)
Social media has become ubiquitous. Tweets and other user-generated content have become so abundant that better tools for information organization are needed in order to fully exploit their potential richness. ”Social curation” has recently emerged as a promising new framework for organizing and adding value to social media, complementing the traditional(More)
Traditional Web search engines mostly adopt a keyword-based approach. When the keyword submitted by the user is ambiguous, search result usually consists of documents related to various meanings of the keyword, while the user is probably interested in only one of them. In this paper we attempt to provide a solution to this problem using a(More)
Information disparity is a major challenge with multilingual document collections. When documents are dynamically updated in a distributed fashion, information content among different language editions may gradually diverge. We propose a framework for assisting human editors to manage this information disparity, using tools from machine translation and(More)