Learn More
This article discusses and compares various methods for defining and measuring radical stability, including the familiar radical stabilization energy (RSE), along with some lesser-known alternatives based on corrected carbon-carbon bond energies, and more direct measures of the extent of radical delocalisation. As part of this work, a large set of R-H,(More)
Advances in theory and algorithms for electronic structure calculations must be incorporated into program packages to enable them to become routinely used by the broader chemical community. This work reviews advances made over the past five years or so that constitute the major improvements contained in a new release of the Q-Chem quantum chemistry package,(More)
A summary of the technical advances that are incorporated in the fourth major release of the Q-CHEM quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation(More)
High-level ab initio molecular orbital calculations are used to study the thermodynamics and electrochemistry relevant to the mechanism of atom transfer radical polymerization (ATRP). Homolytic bond dissociation energies (BDEs) and standard reduction potentials (SRPs) are reported for a series of alkyl halides (R-X; R = CH 2CN, CH(CH 3)CN, C(CH 3) 2CN, CH(More)
The mechanism of reductive cleavage of model alkyl halides (methyl 2-bromoisobutyrate, methyl 2-bromopropionate, and 1-bromo-1-chloroethane), used as initiators in living radical polymerization (LRP), has been investigated in acetonitrile using both experimental and computational methods. Both theoretical and experimental investigations have revealed that(More)
Standard reduction potentials, SRPs, of the halogen atoms have been calculated in water on the basis of an appropriate thermochemical cycle. Using the best up-to-date thermodynamic data available in the literature, we have calculated E(o)(X•/X-) values of 3.66, 2.59, 2.04, and 1.37 V vs SHE for F•, Cl•, Br•, and I•, respectively. Additionally, we have(More)
A test set of 21 radical addition and 28 hydrogen abstraction reactions has been studied at the W1, G4, G3X, G3X(MP2), and G3X(MP2)-RAD levels of theory with a view to establishing whether the recently introduced G4 theory offers improved performance over the G3 methods. All methods tested approximated the benchmark W1 values to within a mean absolute(More)
Oxidation of DNA represents a major pathway of genetic mutation. We have applied infrared spectroscopy in 77 K glass with supporting density functional theory (DFT) calculations (EDF1/6-31+G*) to provide an IR signature of the guanine radical cation G(+*), formed as a result of 193 nm photoionization of DNA. Deprotonation of this species to produce the(More)
Serious (up to 87 kJ mol(-1)) systematic DFT errors in a series of isodesmic reactions are found to be due to the DFT exchange component, and can be largely corrected by substitution of the DFT exchange energy with the Fock exchange energy.