Learn More
Quantum information science attempts to exploit capabilities from the quantum realm to accomplish tasks that are otherwise impossible in the classical domain. Although sufficient conditions have been formulated for the physical resources required to achieve quantum computation and communication, there is a growing understanding of the power of quantum(More)
Time has always had a special status in physics because of its fundamental role in specifying the regularities of nature and because of the extraordinary precision with which it can be measured. This precision enables tests of fundamental physics and cosmology, as well as practical applications such as satellite navigation. Recently, a regime of operation(More)
A critical requirement for diverse applications in quantum information science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory (for storing the states) can enable scalable architectures for quantum computation, communication and(More)
Single photons are generated from an ensemble of cold Cs atoms via the protocol of Duan et al. [Nature (London), ()]]. Conditioned upon an initial detection from field 1 at 852 nm, a photon in field 2 at 894 nm is produced in a controlled fashion from excitation stored within the atomic ensemble. The single-quantum character of field 2 is demonstrated by(More)
We demonstrated entanglement distribution between two remote quantum nodes located 3 meters apart. This distribution involves the asynchronous preparation of two pairs of atomic memories and the coherent mapping of stored atomic states into light fields in an effective state of near-maximum polarization entanglement. Entanglement is verified by way of the(More)
We have constructed an optical clock with a fractional frequency inaccuracy of 8.6x10{-18}, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser cool the Al+ ion and detect its quantum state. The frequency of the {1}S{0}<-->{3}P{0} clock transition is compared to that of a previously constructed(More)
We present a protocol for performing entanglement connection between pairs of atomic ensembles in the single excitation regime. Two pairs are prepared in an asynchronous fashion and then connected via a Bell measurement. The resulting state of the two remaining ensembles is mapped to photonic modes and a reduced density matrix is then reconstructed. Our(More)
Violations of a Bell inequality are reported for an experiment where one of two entangled qubits is stored in a collective atomic memory for a user-defined time delay. The atomic qubit is found to preserve the violation of a Bell inequality for storage times up to 21 micros, 700 times longer than the duration of the excitation pulse that creates the(More)
The time dependence of nonclassical correlations is investigated for two fields (1,2) generated by an ensemble of cold cesium atoms via the protocol of Duan et al. [Nature (London) 414, 413 (2001)]]. The correlation function R(t1,t2) for the ratio of cross to autocorrelations for the (1,2) fields at times (t1,t2) is found to have a maximum value(More)