Learn More
— A self-constructing neural fuzzy inference network (SONFIN) with on-line learning ability is proposed in this paper. The SONFIN is inherently a modified Takagi–Sugeno–Kang (TSK)-type fuzzy rule-based model possessing neural network's learning ability. There are no rules initially in the SONFIN. They are created and adapted as on-line learning proceeds via(More)
—Preventing accidents caused by drowsiness has become a major focus of active safety driving in recent years. It requires an optimal technique to continuously detect drivers' cognitive state related to abilities in perception, recognition, and vehicle control in (near-) real-time. The major challenges in developing such a system include: 1) the lack of(More)
An efficient genetic reinforcement learning algorithm for designing fuzzy controllers is proposed in this paper. The genetic algorithm (GA) adopted in this paper is based upon symbiotic evolution which, when applied to fuzzy controller design, complements the local mapping property of a fuzzy rule. Using this Symbiotic-Evolution-based Fuzzy Controller(More)
A recurrent self-organizing neural fuzzy inference network (RSONFIN) is proposed in this paper. The RSONFIN is inherently a recurrent multilayered connectionist network for realizing the basic elements and functions of dynamic fuzzy inference, and may be considered to be constructed from a series of dynamic fuzzy rules. The temporal relations embedded in(More)
Biomedical signal monitoring systems have been rapidly advanced with electronic and information technologies in recent years. However, most of the existing physiological signal monitoring systems can only record the signals without the capability of automatic analysis. In this paper, we proposed a novel brain-computer interface (BCI) system that can acquire(More)
The growing number of traffic accidents in recent years has become a serious concern to society. Accidents caused by driver's drowsiness behind the steering wheel have a high fatality rate because of the marked decline in the driver's abilities of perception, recognition, and vehicle control abilities while sleepy. Preventing such accidents caused by(More)
A new kind of nonlinear adaptive filter, the adaptive neural fuzzy filter (ANFF), based upon a neural network's learning ability and fuzzy if-then rule structure, is proposed in this paper. The ANFF is inherently a feedforward multilayered connectionist network which can learn by itself according to numerical training data or expert knowledge represented by(More)
Drivers' fatigue has been implicated as a causal factor in many accidents. The development of human cognitive state monitoring system for the drivers to prevent accidents behind the steering wheel has become a major focus in the field of safety driving. It requires a technique that can continuously monitor and estimate the alertness level of drivers. The(More)
A real-time wireless electroencephalogram (EEG)-based brain-computer interface (BCI) system for drowsiness detection has been proposed. Drowsy driving has been implicated as a causal factor in many accidents. Therefore, real-time drowsiness monitoring can prevent traffic accidents effectively. However, current BCI systems are usually large and have to(More)