Learn More
Plastid biogenesis and maintenance depend on the coordinated assembly of proteins imported from the cytosol with proteins translated within plastids. Chloroplasts in leaf cells have a greater need for protein import and protein synthesis than plastids in other organs due to the large amount of proteins required for photosynthesis. We previously reported(More)
Using a transgene-based screening, we previously isolated several Arabidopsis mutants defective in protein import into chloroplasts. Positional cloning of one of the loci, CIA1, revealed that CIA1 encodes Gln phosphoribosyl pyrophosphate amidotransferase 2 (ATase2), one of the three ATase isozymes responsible for the first committed step of de novo purine(More)
Accurate import of thousands of nuclear-encoded proteins is an important step in plastid biogenesis. However, the import machinery of cytosolic precursor proteins to plastids relies on the Toc and Tic (translocons on the outer envelope and inner envelope membrane of chloroplasts) complexes. Toc159 protein was identified in pea (Pisum sativum) as a major(More)
  • 1