Learn More
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) is a rapid and sensitive tool for characterizing a wide variety of biomolecules. However, invisible "sweet spots" that form during heterogeneous cocrystallization minimize the analytical throughput and affect the reproducibility of MALDI analysis. In this study,(More)
Although matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis is an important tool for analyzing and characterizing biomolecules of varying complexity, the sensitivity of MALDI-TOFMS is dependent on proper preparation of the sample, a process that is oftentimes problematic and requires considerable expertise.(More)
The dynamic hip screw (DHS) is commonly used in the treatment of femoral intertrochanteric fracture with high satisfactory results. However, post-operative failure does occur and result in poor prognosis. The most common failure is femoral head varus collapse, followed by lag screw cut-out through the femoral head. In this study, a novel-designed DHS with(More)
A passive biomimic PDMS valve applied in thermopneumatic micropump is firstly designed and realized. Unlike the conventional peristaltic pumping configuration, the micropump consists of two stacking layers of PDMS on a glass slide. This sandwich-type structure builds up two chambers. A thermopneumatic actuation chamber consists of a 57 ohm heater on the(More)
Several methods can be used to improve the enrichment of phosphorylated proteins. In this paper, phosphopeptides were enriched using magnetic iron(II,III) oxide (magnetite, Fe(3)O(4)) nanoparticles (NPs) on a radiate microstructure silicon chip and then analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS)(More)
We present a novel electrowetting-based micro chip for optical switch and display. Electrowetting on dielectric layer (EWOD), using an electrode covered by an insulating film as the substrate for a conducting water drop, enables production of large and reversible contact angle variations, opening a wide field of applications in microphysics. Utilize the(More)
A droplet-based microfluidic system was developed for biochemical assays of triglycerides and methanol as potential applications in medical rapid diagnostics and food safety. We present a novel platform to manipulate biology reaction droplets with features of self-moving, self-mixing, and self-positioning toward the detection spot. The driving force comes(More)
  • 1