Learn More
LIBSVM is a library for Support Vector Machines (SVMs). We have been actively developing this package since the year 2000. The goal is to help users to easily apply SVM to their applications. LIBSVM has gained wide popularity in machine learning and many other areas. In this article, we present all implementation details of LIBSVM. Issues such as solving(More)
LIBLINEAR is an open source library for large-scale linear classification. It supports logistic regression and linear support vector machines. We provide easy-to-use command-line tools and library calls for users and developers. Comprehensive documents are available for both beginners and advanced users. Experiments demonstrate that LIBLINEAR is very(More)
Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary classifiers. Some authors also proposed methods that consider all(More)
SVMs (Support Vector Machines) are a useful technique for data classification. Although SVM is considered easier to use than Neural Networks, users not familiar with it often get unsatisfactory results at first. Here we outline a “cookbook” approach which usually gives reasonable results. Note that this guide is not for SVM researchers nor do we guarantee(More)
Nonnegative matrix factorization (NMF) can be formulated as a minimization problem with bound constraints. Although bound-constrained optimization has been studied extensively in both theory and practice, so far no study has formally applied its techniques to NMF. In this letter, we propose two projected gradient methods for NMF, both of which exhibit(More)
In many applications, data appear with a huge number of instances as well as features. Linear Support Vector Machines (SVM) is one of the most popular tools to deal with such large-scale sparse data. This paper presents a novel dual coordinate descent method for linear SVM with L1-and L2-loss functions. The proposed method is simple and reaches an(More)
Working set selection is an important step in decomposition methods for training support vector machines (SVMs). This paper develops a new technique for working set selection in SMO-type decomposition methods. It uses second order information to achieve fast convergence. Theoretical properties such as linear convergence are established. Experiments(More)
Pairwise coupling is a popular multi-class classification method that combines all comparisons for each pair of classes. This paper presents two approaches for obtaining class probabilities. Both methods can be reduced to linear systems and are easy to implement. We show conceptually and experimentally that the proposed approaches are more stable than the(More)
Support vector machines (SVMs) with the gaussian (RBF) kernel have been popular for practical use. Model selection in this class of SVMs involves two hyperparameters: the penalty parameter C and the kernel width sigma. This letter analyzes the behavior of the SVM classifier when these hyperparameters take very small or very large values. Our results help in(More)