Learn More
The polarization of adipose tissue-resident macrophages toward the alternatively activated, anti-inflammatory M2 phenotype is believed to improve insulin sensitivity. However, the mechanisms controlling tissue macrophage activation remain unclear. Here we show that adipocytes are a source of Th2 cytokines, including IL-13 and to a lesser extent IL-4, which(More)
Endogenous mechanisms that act in the resolution of acute inflammation are essential for host defense and the return to homeostasis. Resolvin D1 (RvD1), biosynthesized during resolution, displays potent and stereoselective anti-inflammatory actions, such as limiting neutrophil infiltration and proresolving actions. Here, we demonstrate that RvD1 actions on(More)
In contrast to the well-established roles of PPARgamma and PPARalpha in lipid metabolism, little is known for PPARdelta in this process. We show here that targeted activation of PPARdelta in adipose tissue specifically induces expression of genes required for fatty acid oxidation and energy dissipation, which in turn leads to improved lipid profiles and(More)
The formation of an atherosclerotic lesion is mediated by lipid-laden macrophages (foam cells), which also establish chronic inflammation associated with lesion progression. The peroxisome proliferator-activated receptor (PPAR) gamma promotes lipid uptake and efflux in these atherogenic cells. In contrast, we found that the closely related receptor(More)
To identify type 2 diabetes (T2D) susceptibility loci, we conducted genome-wide association (GWA) scans in nested case-control samples from two prospective cohort studies, including 2591 patients and 3052 controls of European ancestry. Validation was performed in 11 independent GWA studies of 10,870 cases and 73,735 controls. We identified significantly(More)
Insulin resistance is a major hallmark in the development of type 2 diabetes, which is characterized by an impaired ability of insulin to inhibit glucose output from the liver and to promote glucose uptake in muscle. The nuclear hormone receptor coactivator PGC-1 (peroxisome proliferator-activated (PPAR)-gamma coactivator-1) has been implicated in the onset(More)
Through unknown mechanisms, insulin activates the sterol regulatory element-binding protein (SREBP1c) transcription factor to promote hepatic lipogenesis. We find that this induction is dependent on the mammalian target of rapamycin (mTOR) complex 1 (mTORC1). To further define the role of mTORC1 in the regulation of SREBP1c in the liver, we generated mice(More)
Stem-cell function is an exquisitely regulated process. Thus far, the contribution of metabolic cues to stem-cell function has not been well understood. Here we identify a previously unknown promyelocytic leukemia (PML)–peroxisome proliferator-activated receptor δ (PPAR-δ)–fatty-acid oxidation (FAO) pathway for the maintenance of hematopoietic stem cells(More)
Lipid and carbohydrate homeostasis in higher organisms is under the control of an integrated system that has the capacity to rapidly respond to metabolic changes. The peroxisome proliferator-activated receptors (PPARs) are nuclear fatty acid receptors that have been implicated to play an important role in obesity-related metabolic diseases such as(More)
1 Gene Expression Laboratory tional level, how this process is controlled, in particular 2 Howard Hughes Medical Institute how fuel oxidation and energy uncoupling is integrated, The Salk Institute is not well understood. elements in the promoter region of target genes. The Seoul 151-747 PPAR subgroup comprises three closely related mem-Korea bers: PPAR␣,(More)