Chih-Hao Chang

Learn More
We report progress in using nanoimprint lithography to fabricate high fidelity blazed diffraction gratings. Anisotropically etched silicon gratings with 200 nm period and 7.5° blaze angle were successfully replicated onto 100 mm diameter wafers with subnanometer roughness and excellent profile conformity. Out-of-plane distortion induced by residual stress(More)
We report a process which integrates interference lithography, nanoimprint lithography, and anisotropic etching to fabricate replicated diffraction gratings with sawtooth profiles. This new process greatly reduces grating fabrication time and cost, while preserving the groove shape and smoothness. Relief gratings with 400 nm period inverted triangular(More)
The Reflection Grating Spectrometer (RGS) on Constellation-X will require thousands of large gratings with very exacting tolerances. Two types of grating geometries have been proposed. In-plane gratings have low ruling densities (∼ 500 l/mm) and very tight flatness and assembly tolerances. Off-plane gratings require much higher ruling densities (∼ 5000(More)
We report on the measurement of the fringe-to-substrate phase error in our Nanoruler system. This system utilizes scanning beam interference lithography to pattern and measure large-area, nanometer-accuracy gratings that are appropriate for semiconductor and integrated opto-electronic metrology. We present the Nanonruler's metrology system that is based on(More)
We report on measurements of the diffraction efficiency of 200-nm-period freestanding blazed transmission gratings for wavelengths in the 0.96 to 19.4 nm range. These critical-angle transmission (CAT) gratings achieve highly efficient blazing over a broad band via total external reflection off the sidewalls of smooth, tens of nanometer thin ultrahigh(More)
We have developed a multilevel interference lithography process to fabricate 50 nm period gratings using light with a 351.1 nm wavelength. In this process multiple grating levels patterned by interference lithography are overlaid and spatial-phase aligned to a common reference grating using interferometry. Each grating level is patterned with offset phase(More)
Efficiency measurements of a grazing-incidence diffraction grating in the off-plane mount were performed using polarized synchrotron radiation. The grating had 5000 grooves/mm, an effective blaze angle of 14 degrees, and was gold coated. The efficiencies in the two polarization orientations (TM and TE) were measured in the 1.5-5.0 nm wavelength range and(More)
The authors present a large-area spatial-frequency multiplication fabrication process for patterning one-dimensional periodic structures using multilevel interference lithography. In this process, multiple grating levels with different phase offsets are overlaid by aligning to a reference grating. Each grating level is pattern transfered into a single hard(More)
Volume x-ray gratings consisting of a multilayer coating deposited on a blazed substrate can diffract with very high efficiency, even in high orders if diffraction conditions in-plane (grating) and out-of-plane (Bragg multilayer) are met simultaneously. This remarkable property, however, depends critically on the ability to create a structure with near(More)
Isotropic and anisotropic out-of-plane deformations induced by thin-film residual stress on thin cubic materials are studied. By transforming the compliance tensor, an analytical expression can be derived for the biaxial stiffness modulus for all directions in any given cubic crystal plane. A modified Stoney's equation, including both isotropic and(More)