Chih Chen

Learn More
Highly oriented [111] Cu grains with densely packed nanotwins have been fabricated by direct-current electroplating with a high stirring rate. The [111]-oriented and nanotwinned Cu (nt-Cu) allow for the unidirectional growth of Cu(6)Sn(5) intermetallics in the microbumps of three-dimensional integrated-circuit packaging; a uniform microstructure in a large(More)
As the microelectronic industry advances to Pb-free solders due to environmental concerns, elec-tromigration (EM) has become a critical issue for fine-pitch packaging as the diameter of the solder bump continues decreasing and the current that each bump carries keeps rising owing to higher performance requirement of electronic devices. As stated in 2003(More)
Three dimensional thermo-electrical analysis was employed to simulate the current density and temperature distributions for eutectic SnAg solder bumps with shrinkage bump sizes. It was found that the current crowding effects in the solder were reduced significantly for smaller solder joints. Hot-spot temperatures and thermal gradient were increased upon(More)
X-ray microscopy was employed to investigate void nucleation and propagation during electromigration in solder joints. The shape of the voids at various stages can be clearly observed. The voids became irregular when they propagated to deplete the contact opening. Growth velocity at the early stage was found to be 1.3 ␮m / h under 6.5ϫ 10 3 A/cm 2 at 150 °(More)
The effect of under-bump-metallization (UBM) on electromigration was investigated at temperatures ranging from 135 o C to 165 o C. The UBM structures were examined: 5-µm-Cu/3-µm-Ni and 5 µm Cu. Experimental results show that the solder joint with the Cu/Ni UBM has a longer electromigration lifetime than the solder joint with the Cu UBM. Three important(More)
Direct Cu-to-Cu bonding was achieved at temperatures of 150-250 °C using a compressive stress of 100 psi (0.69 MPa) held for 10-60 min at 10(-3) torr. The key controlling parameter for direct bonding is rapid surface diffusion on (111) surface of Cu. Instead of using (111) oriented single crystal of Cu, oriented (111) texture of extremely high degree,(More)
We investigate the growth of Cu films on two different Cu seed layers: one with regular <111>-oriented grains and the other with very strong <111>-preferred orientation. It is found that densely-packed nanotwinned Cu (nt-Cu) can be grown by pulsed electroplating on the strong <111>-oriented Cu seed layer without a randomly-oriented transition layer between(More)
The heterojunction effects of TiO2 nanotubes on photoconductive characteristics were investigated. For ITO/TiO2/Si diodes, the photocurrent is controlled either by the TiO2/Si heterojunction (p-n junction) or the ITO-TiO2 heterojunction (Schottky contact). In the short circuit (approximately 0 V) condition, the TiO2-Si heterojunction dominates the(More)
As microelectronic industry develops 3D IC on the basis of through-Si-vias (TSV) technology, the processing and reliability of microbumps, which are used to interconnect the stacking chips, is being actively investigated. Due to the reduction in size of microbumps, the diameter is about one order of magnitude smaller than that of flip chip solder joints,(More)
Electromigration activation energy is measured by a built-in sensor that detects the real temperature during current stressing. Activation energy can be accurately determined by calibrating the temperature using the temperature coefficient of resistivity of an Al trace. The activation energies for eutectic SnAg and SnPb solder bumps are measured on Cu(More)