Learn More
Spinal muscular atrophy (SMA) is a major genetic cause of death in childhood characterized by marked muscle weakness. To investigate mechanisms underlying motor impairment in SMA, we examined the spinal and neuromuscular circuitry governing hindlimb ambulatory behavior in SMA model mice (SMNΔ7). In the neuromuscular circuitry, we found that nearly all(More)
Hyperbaric oxygen therapy (HBOT) is the medical therapeutic use of oxygen at a higher atmospheric pressure. The United States Food and Drug Administration have approved several clinical applications for HBOT, but HBOT in traumatic brain injury (TBI) patients has still remained in controversial. The purpose of our study is to evaluate the benefit of HBOT on(More)
The active zone is a unique presynaptic membrane specialization that is believed to be the site of neurotransmitter release. To examine directly the relationship between active zone ultrastructure and synaptic efficacy, frog neuromuscular junctions were studied with a new technique combining electrophysiology, light microscopy, and freeze-fracture of(More)
This study aimed to examine changes of presynaptic voltage-sensitive calcium channel (VSCC) subtypes during synapse formation and regeneration in relation to transmitter release at the neuromuscular junction (NMJ). Synaptic potentials were recorded from developing rat NMJs and from regenerating mouse and frog NMJs. As in normal adult NMJs, evoked(More)
Recent studies suggest that glial cells actively participate in the formation, function, maintenance, and repair of the chemical synapse. However, the molecular mechanisms of glia-synapse interactions are largely unknown. We have shown previously that Schwann cell-conditioned medium (SC-CM) promotes synaptogenesis in Xenopus nerve-muscle cocultures. The(More)
Emerging evidence suggests that the neurotransmitter acetylcholine (ACh) negatively regulates the development of the neuromuscular junction, but it is not clear if ACh exerts its effects exclusively through muscle ACh receptors (AChRs). Here, we used genetic methods to remove AChRs selectively from muscle. Similar to the effects of blocking ACh(More)
The question of whether the synaptic extracellular matrix undergoes remodeling and how this remodeling is related to nerve terminal plasticity was examined in living neuromuscular junctions of adult frogs. Sartorius muscles were double stained with a fluorescent nerve terminal dye 4-(4-diethylamino-styryl)-N-methylpyridinium iodide (4-Di-2-Asp) and(More)
A number of mouse models for spinal muscular atrophy (SMA) have been genetically engineered to recapitulate the severity of human SMA by using a targeted null mutation at the mouse Smn1 locus coupled with the transgenic addition of varying copy numbers of human SMN2 genes. Although this approach has been useful in modeling severe SMA and very mild SMA, a(More)
To investigate the in vivo role of glial cells in synaptic function, maintenance, and development, we have developed an approach to selectively ablate perisynaptic Schwann cells (PSCs), the glial cells at the neuromuscular junction (NMJ), en masse from live frog muscles. In adults, following acute PSC ablation, synaptic structure and function were not(More)
Spinal muscular atrophy (SMA), a motoneuron disease caused by a deficiency of the survival of motor neuron (SMN) protein, is characterized by motoneuron loss and muscle weakness. It remains unclear whether widespread loss of neuromuscular junctions (NMJs) is involved in SMA pathogenesis. We undertook a systematic examination of NMJ innervation patterns in(More)