Chien-Ping Ko

Learn More
Spinal muscular atrophy (SMA) is a major genetic cause of death in childhood characterized by marked muscle weakness. To investigate mechanisms underlying motor impairment in SMA, we examined the spinal and neuromuscular circuitry governing hindlimb ambulatory behavior in SMA model mice (SMNΔ7). In the neuromuscular circuitry, we found that nearly all(More)
Hyperbaric oxygen therapy (HBOT) is the medical therapeutic use of oxygen at a higher atmospheric pressure. The United States Food and Drug Administration have approved several clinical applications for HBOT, but HBOT in traumatic brain injury (TBI) patients has still remained in controversial. The purpose of our study is to evaluate the benefit of HBOT on(More)
To investigate the in vivo role of glial cells in synaptic function, maintenance, and development, we have developed an approach to selectively ablate perisynaptic Schwann cells (PSCs), the glial cells at the neuromuscular junction (NMJ), en masse from live frog muscles. In adults, following acute PSC ablation, synaptic structure and function were not(More)
Recent studies have shown that the survival of mammalian motoneurons in vitro is promoted by neurotrophins (NTs) and cAMP. There is also evidence that neurotrophins enhance transmitter release. We thus investigated whether these agents also promote synaptogenesis. Cultured Xenopus spinal cord neurons were treated with a mixture of BDNF, glia-derived(More)
Recent studies suggest that glial cells actively participate in the formation, function, maintenance, and repair of the chemical synapse. However, the molecular mechanisms of glia-synapse interactions are largely unknown. We have shown previously that Schwann cell-conditioned medium (SC-CM) promotes synaptogenesis in Xenopus nerve-muscle cocultures. The(More)
Spinal muscular atrophy (SMA), a motoneuron disease caused by a deficiency of the survival of motor neuron (SMN) protein, is characterized by motoneuron loss and muscle weakness. It remains unclear whether widespread loss of neuromuscular junctions (NMJs) is involved in SMA pathogenesis. We undertook a systematic examination of NMJ innervation patterns in(More)
This study aimed to examine changes of presynaptic voltage-sensitive calcium channel (VSCC) subtypes during synapse formation and regeneration in relation to transmitter release at the neuromuscular junction (NMJ). Synaptic potentials were recorded from developing rat NMJs and from regenerating mouse and frog NMJs. As in normal adult NMJs, evoked(More)
Spinal muscular atrophy (SMA) is a genetic disease caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. A paralogous gene in humans, SMN2, produces low, insufficient levels of functional SMN protein due to alternative splicing that truncates the transcript. The decreased levels of SMN protein lead to progressive neuromuscular(More)
Complexins (Cplxs) are small, SNARE-associated proteins believed to regulate fast, calcium-triggered exocytosis. However, studies have pointed to either an inhibitory and/or facilitatory role in exocytosis, and the role of Cplxs in synchronizing exocytosis is relatively unexplored. Here, we compare the function of two types of complexin, Cplx 1 and 2, in(More)
A number of mouse models for spinal muscular atrophy (SMA) have been genetically engineered to recapitulate the severity of human SMA by using a targeted null mutation at the mouse Smn1 locus coupled with the transgenic addition of varying copy numbers of human SMN2 genes. Although this approach has been useful in modeling severe SMA and very mild SMA, a(More)