Chien Kuo Wang

Learn More
Future global climate projections are subject to large uncertainties. Major sources of this uncertainty are projections of anthropogenic emissions. We evaluate the uncertainty in future anthropogenic emissions using a computable general equilibrium model of the world economy. Results are simulated through 2100 for carbon dioxide (CO2), methane (CH4),(More)
In order to elucidate interactions between climate change and biogeochemical processes and to provide a tool for comprehensive analysis of sensitivity, uncertainty, and proposed climate change mitigation policies, we have developed a zonally averaged twodimensional model including coupled biogeochemical nd climate submodels, as a part of an integrated(More)
To aid climate policy decisions, accurate quantitative descriptions of the uncertainty in climate outcomes under various possible policies are needed. Here, we apply an earth systems model to describe the uncertainty in climate projections under two different policy scenarios. This study illustrates an internally consistent uncertainty analysis of one(More)
[1] Aerosols are a critical factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosol effects on clouds could further extend to precipitation, both through the formation of cloud(More)
[1] A multimode, two-moment aerosol model has been incorporated in the NCAR CAM3 to develop an interactive aerosol–climate model and to study the impact of anthropogenic aerosols on the global climate system. Currently, seven aerosol modes, namely three for external sulfate and one each for external black carbon (BC), external organic carbon (OC),(More)
The possible trends for atmospheric carbon monoxide in the next 100 years have been illustrated using a coupled atmospheric chemistry and climate model driven by emissions predicted by a global economic development model. Various model runs with different assumptions regarding emissions or model parameters have been carried out to investigate the impacts of(More)
The MIT Joint Program on the Science and Policy of Global Change combines cutting-edge scientific research with independent policy analysis to provide a solid foundation for the public and private decisions needed to mitigate and adapt to unavoidable global environmental changes. Being data-driven, the Program uses extensive Earth system and economic data(More)
The impact of uncertainty in the rate of heat and carbon uptake by the deep ocean on climate response to increases in greenhouse gas concentrations is studied by means of numerical simulations with the two-dimensional (2D) climate-chemistry model developed in the framework of the MIT Joint Program on the Science and Policy of Global Change. This model(More)