Chien-Hung Yu

Learn More
-1 Programmed ribosomal frameshifting (PRF) in synthesizing the gag-pro precursor polyprotein of Simian retrovirus type-1 (SRV-1) is stimulated by a classical H-type pseudoknot which forms an extended triple helix involving base-base and base-sugar interactions between loop and stem nucleotides. Recently, we showed that mutation of bases involved in triple(More)
The cellular polyamines spermine, spermidine, and their metabolic precursor putrescine, have long been associated with cell-growth, tumor-related gene regulations, and Alzheimer's disease. Here, we show by in vitro spectroscopy and AFM imaging, that these molecules promote aggregation of amyloid-beta (Aβ) peptides into fibrils and modulate the aggregation(More)
Knowing the molecular details of the interaction between riboswitch aptamers and their corresponding metabolites is important to understand gene expression. Here we report on a novel in vitro assay to study preQ(1) riboswitch aptamers upon binding of 7-aminomethyl-7-deazaguanine (preQ(1)). The assay is based on the ability of the preQ(1) aptamer to fold,(More)
Programmed ribosomal frameshifting is a translational recoding mechanism commonly used by RNA viruses to express two or more proteins from a single mRNA at a fixed ratio. An essential element in this process is the presence of an RNA secondary structure, such as a pseudoknot or a hairpin, located downstream of the slippery sequence. Here, we have tested the(More)
Guanine-rich sequences can fold into four-stranded structures of stacked guanine-tetrads, so-called G-quadruplexes (G4). These unique motifs have been extensively studied on the DNA level; however, exploration of the biological roles of G4s at the RNA level is just emerging. Here we show that G4 RNA when introduced within coding regions are capable of(More)
In Alzheimer's disease, amyloid-β (Aβ) peptides aggregate into extracellular fibrillar deposits. Although these deposits may not be the prime cause of the neurodegeneration that characterizes this disease, inhibition or dissolution of amyloid fibril formation by Aβ peptides is likely to affect its development. ThT fluorescence measurements and AFM images(More)
The Escherichia coli ClpYQ (HslUV) complex is an ATP-dependent protease, and the clpQ⁺Y⁺ (hslV⁺U⁺) operon encodes two heat shock proteins, ClpQ and ClpY, respectively. The transcriptional (op) or translational (pr) clpQ⁺::lacZ fusion gene was constructed, with the clpQ⁺Y⁺ promoter fused to a lacZ reporter gene. The clpQ⁺::lacZ (op or pr) fusion gene was(More)
Carbon nanotubes have specific properties that make them potentially useful in biomedicine and biotechnology. However, carbon nanotubes may themselves be toxic, making it imperative to understand how carbon nanotubes interact with biomolecules such as proteins. Here, we used NMR, CD, and ThT/fluorescence spectroscopy together with AFM imaging to study(More)
Riboswitches are regions within mRNAs that can regulate downstream expression of genes through metabolite-induced alteration of their secondary structures. Due to the significant association of bacterial essential or virulence genes, bacterial riboswitches have become promising targets for development of putative antibacterial drugs. However, most of the(More)
  • 1