Chien-Hsun Chen

  • Citations Per Year
Learn More
Various synthetic compounds are frequently discharged into the environment via human activities. Among them, certain contaminants may disrupt normal physiological functions of wildlife and humans via interactions with nuclear receptors. To protect human health and the environment, it is important to detect environmental ligands for human nuclear receptors.(More)
Water and sediment samples from river systems located in Southern Taiwan were investigated for the presence of aryl hydrocarbon receptor (AhR) agonists and genotoxicants by a combination of recombinant cell assays and gas chromatography-mass spectrometry analysis. AhR agonist activity and genotoxic response were frequently detected in samples collected(More)
In this research, we aimed to evaluate the impact of the surface charges and morphologies of electrodes on electrochemically detecting dopamine (DA) in the presence of protein adsorption, uric acid (UA), and ascorbic acid (AA). Through the electropolymerization of functionalized 3,4-ethylenedioxythiophenes (EDOT) directly on Au electrodes, we successfully(More)
We demonstrated a high-performance Si-organic hybrid heterojunction solar cell utilizing low-temperature and liquid-phase-processed TiO2 as an interlayer between poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and Si nanoholes to produce a conformal contact on the surface of the Si nanostructure. The hydrophilic TiO2/Si-nanohole surface(More)
The interplay of surface texture, strain relaxation, absorbance, grain size, and sheet resistance in textured, boron-doped ZnO (ZnO@B), transparent conductive oxide (TCO) materials of different thicknesses used for thin film, solar cell applications is investigated. The residual strain induced by the lattice mismatch and the difference in the thermal(More)
In this paper, we propose a chemically grown titanium oxide (TiO2) on Si to form a heterojunction for photovoltaic devices. The chemically grown TiO2 does not block hole transport. Ultraviolet photoemission spectroscopy was used to study the band alignment. A substantial band offset at the TiO2/Si interface was observed. X-ray photoemission spectroscopy(More)
In this study, a new hybrid electrode featuring a high gauge factor of >30, decent stretchability (100% of the original conductivity can be retained after 50 cycles of stretching under a 20% strain without prestrain treatment), high transmittance (>70%) across 400-900 nm, and a good sheet resistance (<50 Ω sq-1) was successfully exploited. These superior(More)
In this work, we applied a low-temperature (150 C) alumina nitride (AlN) film as the gate dielectric in organic thin-film transistors (OTFTs). It was found that the Poole–Frenkel-type leakage can be suppressed by increasing the nitrogen gas ratio in the deposition process. The thin and low-leakage AlN dielectric was characterized and then utilized in(More)
The design of band reconfigurable CMOS-MEMS bandstop filter is proposed in this work. The stopband is switchable when driving comb-fingers mechanical structure to change the open-stub capacitance. The actuator is constructed by numerous parallel beams which are connected by a central pole to create a fishbone-like structure. Therefore, the static(More)
In this work, textured, well-faceted ZnO materials grown on planar Si(100), planar Si(111), and textured Si(100) substrates by low-pressure chemical vapor deposition (LPCVD) were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and cathode luminescence (CL) measurements. The results show that ZnO grown(More)
  • 1